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Introduction: There is growing evidence from neuro-computational studies that instru-

mental learning involves the dynamic interaction of a computationally rigid, low-level

striatal and a more flexible, high-level prefrontal component.

Methods: To evaluate the role of the prefrontal cortex in instrumental learning, we applied

anodal transcranial direct current stimulation (tDCS) optimized for the left dorsolateral

prefrontal cortex, by using realistic MR-derived finite element model-based electric field

simulations. In a study with a double-blind, sham-controlled, repeated-measures design,

sixteen male participants performed a probabilistic learning task while receiving anodal

and sham tDCS in a counterbalanced order.

Results: Compared to sham tDCS, anodal tDCS significantly increased the amount of mal-

adaptive shifting behavior after optimal outcomes during learning when reward proba-

bilities were highly dissociable. Derived parameters of the Q-learning computational model

further revealed a significantly increased model parameter that was sensitive to random

action selection in the anodal compared to the sham tDCS session, whereas the learning

rate parameter was not influenced significantly by tDCS.

Conclusion: These results congruently indicate that prefrontal tDCS during instrumental

learning increased randomness of choice, possibly reflecting the influence of the cognitive

prefrontal component.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In most everyday situations, we constantly have to adapt and

optimize our behavior to cope with various, often conflicting,
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demands and constraints posed by each specific environment.

An important aspect of adaptive behavior is the capability of

choosing those actions that lead to a high amount of cumu-

lative reward. One way to achieve this goal is by successively
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generating predictions about the consequences of each action.

Generating and using these predictions to guide behavior is

known as instrumental learning (Dayan & Balleine, 2002).

Instrumental learning in humans recruits multiple, func-

tionally interacting and parallel brain systems (for reviews see

Dolan & Dayan, 2013; Samson, Frank, & Fellous, 2010); these

involve a striatal reinforcement learning (RL) component and a

cognitive, prefrontal control component (Collins& Frank, 2012;

Daw, Niv, & Dayan, 2005; Daw, O'Doherty, Dayan, Seymour, &

Dolan, 2006), also known respectively as the model-free and

model-based controls of instrumental learning (Daw,

Gershman, Seymour, Dayan, & Dolan, 2011; Daw et al., 2005;

Wunderlich, Smittenaar, & Dolan, 2012). The low-level RL (or

model-free) component is characterized by computational ri-

gidity and it requires a large number of learning trials to

gradually integrate the long-termprobability of reinforcement

values in response to probabilistic reward associations (Frank,

Moustafa, Haughey, Curran, & Hutchison, 2007).

The high-level cognitive (or model-based) component,

driven by the prefrontal system, has greater computational

flexibility as it dynamically computes the policy to optimize

behavior by evaluating the instrumental requirements of the

decision situation (Daw et al., 2006). On the one hand, this is

achieved by actively maintaining the reinforcement history in

working memory (WM) which permits fast goal-directed de-

cisions, albeit with the restriction of a limited capacity (Collins

& Frank, 2012; Frank, et al., 2007). On the otherhand, functional

neuroimaging evidence also suggests that the prefrontal sys-

tem controls adaptive exploration (Daw et al., 2006). Further

evidence also indicates the role of prefrontal involvement

specifically, as individual genetic differences in regulating

prefrontal dopamine (DA) Catechol-O-methyltransferase

(COMT) rs4680 single nucleotide polymorphism has an

impact on exploratory behavior but not on the level of striatal

DA (Frank, Doll, Oas-Terpstra, & Moreno, 2009).

Nevertheless, genetic studies are correlational in nature

and a more direct demonstration of the involvement of the

prefrontal component in cognitive control in instrumental

learning requires a focal interference with prefrontal regions.

Transcranial direct current stimulation (tDCS) has the poten-

tial to temporarily shift neuronal membrane potentials of a

given neuronal population by passing a low-intensity elec-

trical current through the brain (Nitsche & Paulus, 2000).

These physiological effects have been linked to changes in a

wide range of cognitive functions, including those that are

related to the prefrontal cortex, such as WM (e.g., Zaehle,

Sandmann, Thorne, J€ancke, & Herrmann, 2011) or prototype

learning (Ambrus et al., 2011).

Modeling studies investigating the tDCS-induced current

profile characteristics indicate that the effect of tDCS, at least

from electrodes in close spatial proximity, is primarily limited

to the neocortex (Datta, Elwassif, Battaglia, & Bikson, 2008;

Faria, Hallett, & Miranda, 2011), although tDCS may have the

ability to remotely activate deeper brain structures, such as

the striatal system (Chib, Yun, Takahashi, & Shimojo, 2013).

The commonnotion that anodal tDCS leads to an increase and

cathodal tDCS leads to a decrease in neuronal excitability in

the brain area underneath the electrode have been challenged

by recent evidence (Reato et al., 2013). First, the electric field

induced by tDCS can both de- and hyperpolarize within the
same gyrus (Reato et al., 2013) and second, different types of

neurons are differentially modulated depending on their

morphology and axonal orientation (Radman, Ramos,

Brumberg, & Bikson, 2009). Hence, a simple mechanistic

relation between polarity and expected behavioral changes

may be difficult to establish. Indeed, recent evidence suggests

that tDCS has less consistency in polarity effects in cognitive

tasks compared to basic motor functions (Jacobson,

Koslowsky, & Lavidor, 2012).

The aim of the present experimental work has been to

study, which component of instrumental learning was influ-

enced by prefrontal tDCS by evaluating the effect of anodal

tDCS on behavior as measured by accuracy and computa-

tional model parameters. Advances in computational

modeling of RL using Q-learning algorithms allow distinct

processes to be modeled in detail. This entails the ability to

derive information about how performance is affected by

specific behavioral influences or strategies by fitting the RL

model to behavioral data (e.g., Frank et al., 2009).

In the classical model we employed in this study (Jocham,

Klein, & Ullsperger, 2011), the learning rate parameter a re-

flects the impact of the prediction error (i.e., the difference

between the previous outcome estimate and the actual esti-

mate after a certain action). Larger a values reflect trial-to-trial

fluctuations (a recency effect), whereas lower values indicate

a gradual value integration and more stable value estimation

(Frank et al., 2007). If prefrontal anodal tDCS biases partici-

pants to rely more on the WM component, we expected to

observe a trial-to-trial behavioral adjustment (i.e., change of

decision after negative response) during learning and an

increased a value. In contrast, if anodal tDCS compels par-

ticipants to rely less on the WM component, then a lower a

value and less trial-to-trial behavioral adjustment will be

observed e which would increase outcome-dependent

exploitation of the better symbol. In addition, the b param-

eter, also known as the “temperature” or “noise” parameter,

reflects the learners' bias towards either exploitation (i.e.,

choosing the better option in case of lower b values) or

exploration (i.e., choosing the items more randomly; higher b

values) (Frank et al., 2007; Jocham, et al., 2011). This model is

designed to capture behavior in a probabilistic environment

where not only the expected value (determined by integrating

past outcomes with learning rate a) determines the decision,

but choices are also characterized by intrinsic randomness,

reflected in the noise parameter b (Beeler, Daw, Frazier, &

Zhuang, 2010). If anodal tDCS affects exploration and in-

duces randomness in choices, participants will demonstrate

increased shifting behavior (i.e., a tendency to change, rather

than repeat a response to the same stimulus) and a decreased

preference for symbols that are associated with the higher

reward probability, reflected by higher b values.
2. Material and methods

2.1. Participants

Sixteen right-handed, healthy, native German-speaking par-

ticipants took part in the study (mean age of 22.9 ± 2.2 years).

In order to avoid menstrual cycle-dependent level changes of
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the gonadal steroid hormones and their neurofunctional

modulation of the reward system, onlymale participantswere

included in the study (Dreher et al., 2007; Jocham et al., 2011).

All participants gavewritten informed consent. The studywas

conducted in accordance with the Declaration of Helsinki and

it was approved by the local ethics committee.

2.2. Stimulation

A battery-driven CE-certified medical device (DC-Stimulator-

Plus, NeuroConn GmbH, Ilmenau, Germany) was used to

deliver the direct current to the head. Two rubber electrodes

(3�3.5 cm)were coveredwithconductivepasteandpositioned

on the scalp using the standard 64 channel 10/20 EEG caps in

different sizes (small, medium and large; ANT-waveguard:

https://www.ant-neuro.com/products/waveguard). The ver-

tex was identified as the intercept of the half-way distance

between the nasion and inion and the half-way distance be-

tween thepre-auricularpoints. TheCzelectrode locationof the

EEG cap was placed over the vertex and this position was re-

measured after the EEG cap was fitted to the participant's
head. The electrode montage was based on electric field sim-

ulations using a realistic MR-derived finite element model

(Opitz, Windhoff, Heidemann, Turner, & Thielscher, 2011)

employing SimNibs (Windhoff, Opitz, & Thielscher, 2013). In

total, 136 different electrode montages were simulated. Two

circular-shaped electrodes with a diameter of 32 mm were

used in each of the simulations. Electrodes were placed such

that coverage of almost any location in the brain could be

achieved in at least one montage. Out of all combinations, the

electrode montage was selected that maximized absolute

electric field strength in the dorsolateral prefrontal cortex, as

determined based on anatomical landmarks (Mylius et al.,

2013).
Fig. 1 e The electrode montage was optimized by using a realist

to maximize the current flow in the DLPFC. The anodal electrod

aligned vertically, whereas the cathodal electrode was placed o

dorsolateral prefrontal cortex.
The anodal electrode was adjusted to the F3 location cor-

responding to the left dorsolateral prefrontal cortex (DLPFC)

by moving it in the anterior and superior directions, such that

the F3 location was in the lower-right corner of the vertically

aligned electrode (see Fig. 1). The cathodal electrode was

placed over the temporal cortex, where themiddle point of the

horizontally aligned electrode was exactly located over the T7

position.

Two stimulation protocols were used; one for the anodal

tDCS and one for the sham tDCS condition. In the anodal tDCS

condition, the stimulation was administered for 16 min,

comprising a 30 sec fade-in/fade-out period and 15 min of

stimulation at 1.0 mA intensity. In the sham tDCS condition,

the stimulation protocol was identical to the anodal stimula-

tion, except the stimulation duration, which lasted for only

30 sec (Ambrus et al., 2012). Although the stimulation duration

in the real session was 4 min shorter than the learning phase,

tDCS studies conducted on the motor cortex showed that the

excitability changes following anodal or cathodal stimulation

outlasts the stimulation duration by an hour, provided the

stimulation duration is about 10 min or longer (Nitsche &

Paulus, 2001).
2.3. Experimental design

The study employed a double-blind, placebo-controlled,

repeated-measures experimental design. Subjects attended

two separate experimental sessions, in which they completed

two versions of the behavioral task (see later), which used two

different sets of stimuli. Both the order of the version of the

task presented first, as well as the order of the stimulation

conditions (tDCS vs sham), were randomized for each partic-

ipant and counterbalanced such that half of the participants
ic MR-derived finite element computational model in order

e was shifted in the anterior and superior direction and

ver the temporal cortex and aligned horizontally. DLPFC:
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started with anodal tDCS and half with sham stimulation, and

half with task version 1 and half with task version 2.

In order to meet the criteria of a double-blind design, the

“study mode” of the stimulator was used; that is, the two

stimulation conditions, anodal tDCS vs sham tDCS, were

randomly encoded as A or B modes, respectively. For each

session, the investigator selected the stimulation mode ac-

cording to a predetermined randomized list. The association

between modes and stimulation conditions was unknown to

the investigator who conducted the experiment. The study

mode encoding was secured with a 5-digit code that was only

accessible to the principal investigator (A.A.), who was not

involved in the data collection and analysis process. The study

mode was further advanced by the so called “pseudo-stimu-

lation” mode, which resulted in identical display information

(i.e., stimulation duration and impedance information) for the

anodal tDCS and sham condition. In order to maintain the

participant's unawareness of whether tDCS or sham stimu-

lationwas used, the standard “fade-in/short stimulation/fade-

out” procedurewas used in the sham condition (Ambrus et al.,

2012), which is effective at 1.0 mA for up to 20 min (Gandiga,

Hummel, & Cohen, 2006). In addition, participants filled out

a short questionnaire after each session in order to discover

whether adequate blinding was in fact maintained.

2.4. RL and choice task

The experimental task was adapted from Jocham et al. (2011),

originally developed by Frank, Seeberger, and O'Reilly (2004).

The task consisted of a learning and a test phase. In the

learning phase (see Fig. 2), participants saw three pairs of

symbols (labeled AB, CD and EF for reference), one pair at a

time. Each symbol was probabilistically associated with a
Fig. 2 e The learning phase consisted of 3 symbol pairs (Chinese

with the reward (see text for details).
reward, which followed an inverse relationship within a pair

(.8/.2, .7/.3 and .6/.4 for A/B, C/D and E/F, respectively). For

example, symbol A was 80% correct and 20% incorrect,

whereas symbol B was 20% correct and 80% incorrect. The

task of the participants was to select the “better” symbol from

the pair (i.e., the one with higher reward probability). The

value of the reward probability was unknown to the partici-

pants. The learning phase consisted of 6 learning blocks,

where each symbol pair was presented 20 times, resulting in

120 presentations of each symbol pair during the entire

learning phase (360 presentation trials in total). For each

symbol pair, the location of each symbol (left or right) was

counterbalanced. The total trial duration was 3.3 sec. The

sequence of events within a trial was similar to the study by

Jocham et al. (2011): Each trial started with the presentation of

a fixation cross for a duration of either 200, 500 and 800 msec

(randomly chosen) followed by the symbol pair until a

response was given. If no response wasmade after 1700msec,

the trial was canceled. Finally, the selected symbol was

highlighted for 200 msec and feedback was displayed for

200 msec. The feedback was either a ‘happy’ or a ‘sad’

emoticon (i.e., ameta-communicative pictorial representation

of facial expressions in Western style) for the positive or for

the negative feedbacks, respectively. An additional ‘confused

face’ emoticon was used in case of no answer.

In the transfer phase, participants were randomly pre-

sented with all possible combinations of the symbols (3

learned combinations plus 12 new combinations; 15 in total)

repeated 12 times each. To prevent the participants from

additional learning in the transfer phase, no feedback was

provided at this time.

Before the start of the experiment, participants were given

written instructions about the learning and the transfer phase
characters; left), each of which probabilistically associated

http://dx.doi.org/10.1016/j.cortex.2014.08.026
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(translated to German from Frank et al., 2007). Then, partici-

pants were asked to perform a training session of 13 trials, to

ensure that they were comfortable with the experimental

setup. Before the start of the experiment proper, participants

were shown the 6 individual symbols twice, presented sepa-

rately for 5 sec, to familiarize them with the stimuli.

2.5. Analysis of the RL and choice task

In the learning phase, our main interest focused on whether

the participants' decisions following a positive or negative

feedback were influenced by the stimulation. After receiving

positive (win) or negative (lose) feedback to their decisions,

participants could choose the previously chosen symbol (stay)

or select the alternative symbol (shift) in the subsequent trial

containing the same symbol pair (note that the three symbol

pairs were randomly intermixed, each learning block con-

taining 20 trials for each symbol pair). Therefore, win-stay

behavior was defined when participants chose the same

symbol after having received positive feedback on the previ-

ous trial inwhich the same pair had been presented.Win-shift

behavior was defined when participants chose the alternative

symbol even though they had previously received a positive

feedback for this choice. Lose-stay and lose-shift behavior

were described respectively as staying on the previous symbol

or shifting the decision to the alternative symbol after having

received a negative feedback. Each trial was assigned to one of

these four categories, however, only win-stay and lose-stay

behaviors were included into the analysis, as stay and shift

behavior complement each other and add up to the total

percentages rewarded.

In the transfer phase, we analyzed the accuracy according

to the standard “choose A e avoid B” classification scheme

(Frank et al., 2004). The percentages of correct choices were

separately calculated for “choose A” trials (AC, AD, AE, and AF)

and for “avoid B” trials (BC, BD, BE, and BF).

2.6. RL model

We used the RL model described in (Jocham et al., 2011). In

brief, action values Q(A) through Q(F) for each item A through

F were estimated based on the individual history of sequence

of choices and the corresponding feedback experienced after

each decision during the learning phase. The action values

for each item were initialized to zero and were gradually

updated using a modified version of the RescorlaeWagner

algorithm: Qtþ1(i) ¼ Qt(i) þ a(rt � Qt(i)) for i2fA;B;C;D;E; Fg
and t the trial number. The prediction error defined as

rt � Qt(i) is the difference between the actual and the ex-

pected feedback, where rt represents the received reward on

trial t (either 0 or 1 for negative and positive feedbacks,

respectively). The learning rate parameter a reflects the

impact of the prediction error; lower a-values indicate that

the Q-values are integrated gradually over multiple-trials,

whereas higher a-values reflect the recency effect (Frank

et al., 2007). The probability of choosing one item over the

other from a given pair was calculated using the soft-max

rule. Thus, the probability of choosing A when AB was pre-

sented was calculated using the following rule:

Pt(A) ¼ exp(Qt(A)/b)/[exp(Qt(A)/b) þ exp(Qt(B)/b)]. The
parameter b reflects the participant's bias towards either

exploration or exploitation: lower b-values indicate that the

participant exploits the decision (i.e., choosing the better

option with higher probability), whereas higher b-values

reflect exploration (i.e., choosing the items more randomly)

(Frank et al., 2007; Jocham et al., 2011). The maximum-like-

lihood (ML) parameter estimate (MLE) was selected by

choosing parameters a;b that maximized the log-likelihood

lðdja; bÞ ¼ Pn
t¼1log PtðdtÞ, where dt2fA;B;C;D;E; Fg is the par-

ticipant's decision on trial t. We maximized the parameters

for each participant separately using the NeldereMead sim-

plex algorithm (Nelder & Mead, 1965). The optimization al-

gorithm was run 100 times for each subject from randomly

generated starting points in the interval [0,1] for a and [0,3]

for b to ensure uniqueness of the solution.

2.7. Statistical analysis

For each symbol and participant, we calculated the per-

centages (i.e., the percentage of choosing a symbol), accuracy

and reaction time (RT). The percentage values for choosing

the symbols were calculated relative to the total number of

decisions corrected for the missing values. Accuracy was

defined as “correct”, when the statistically better symbol (i.e.,

A, C and E) was chosen from a given pair. Therefore, when

participants received negative feedback after choosing the

better option (e.g., A), the decision is still considered to be an

accurate decision. Similarly, when participants chose B

(e.g., suboptimal) and received positive feedback, the deci-

sion is considered incorrect. The probability to stay after

positive, p(stayjwin), or negative feedback, p(stayjlose), was

calculated as the number of stays after positive or negative

feedbacks, divided by the total number of positive or nega-

tive feedbacks.

A ShapiroeWilk test was performed, which indicated that

in the case of accuracy in the “choose A e avoid B”

classification scheme data, the assumption of normality was

violated (all ps < .004); therefore, an arcsine square root

transformation was applied on these data such that the as-

sumptions for the ensuring parametric tests were fulfilled (all

ps > .05). Data were analyzed using repeated-measures An-

alyses of Variance (ANOVA). The assumption of sphericity

was tested using the Mauchly test. If there was violation of

sphericity, a Huynh-Feldt correction was applied that adjusts

the p-values and degrees of freedom, and the latter values

were rounded up to the first decimal place. Statistical ana-

lyses were conducted using a significance level of p < .05. If

significant interactions occurred, post-hoc multiple compar-

isons were performed, where the p-value was always

adjusted for multiple comparisons using the Bonferro-

nieHolm method (Holm, 1979).

In the learning phase, the within-subject factors were

stimulation (2 levels: sham and anodal tDCS), block (6 levels:

1e6 blocks), block part (2 levels: first 40 decisions and last 80

decisions) and behavioral shifting (2 levels: win-stay and lose-

stay). In the transfer phase, within-subject factors were

stimulation (2 levels: sham and anodal tDCS), feedback

learning (2 levels: choose A and avoid B classification) and

symbols for the final Q-values (6 levels: for A, B, C, D, E and F

symbols).

http://dx.doi.org/10.1016/j.cortex.2014.08.026
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Fig. 3 e In the anodal tDCS session, participants stayed

significantly less after receiving reward or punishment in

the AB pair. Values represent mean percentages calculated

for the six experimental blocks in the learning phase. Error

bars represent standard error of mean. Asterisk indicates

significant differences.
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3. Results

3.1. Analysis of the learning phase

3.1.1. General accuracy and RT
During the course of the experiment, participants learned to

reliably choose the statistically better symbol from the pairs in

both stimulation conditions, evidenced by a significant in-

crease in the arcsine square root transformed accuracy across

blocks (F3.4,51.1 ¼ 15.417, p < .001, h2
p ¼ .507). The general

learning performance was not influenced by tDCS. There was

neither a main effect of stimulation nor a stimulation � block

interaction (all ps > .189). The RT data revealed the same

pattern of results, that is, the significant main effect of block

indicates that participants became faster (F5,75 ¼ 49.519,

p < .001, ƞp2 ¼ .768), but the lack of a significant main effect of

stimulation and the stimulation � block interaction suggests

that in general, RT was not modulated by the stimulation

(F < 1) (see Table 1).

3.1.2. Analysis of the stay and shift behavior
When analyzing the amount of stay behavior separately for

the symbol pairs, we found a significant main effect of stim-

ulation for the AB pair (F1,15 ¼ 5.09, p ¼ .04, ƞ2 ¼ .07) (see Fig. 3).

Neither the main effect of stay type (F1,15 ¼ 2.07, p ¼ .17,

ƞ2 ¼ .06), nor the stimulation by stay type interaction

(F1,15 ¼ .04, p ¼ .84, ƞ2 ¼ .0000) reached a level of significance

(see Table 2).

For the CD and the EF pair, the analysis revealed neither

main effect for stimulation, nor a stimulation � behavioral

shifting interaction (all ps > .336; all Fs < 1) (see Table 2 for

descriptive statistics).
3.2. Analysis of the transfer phase

3.2.1. General accuracy and RT
General accuracy in the anodal tDCS and sham tDCS session

was compared with paired t-tests, which revealed that

participants performed significantly better when receiving

sham tDCS compared to anodal tDCS [t(15) ¼ 2.887,

p ¼ .012]: Msham ¼ .82, SEMsham ¼ .02; Manodal ¼ .75,

SEManodal ¼ .03. RT was not affected by the stimulation

[t(15) ¼ 1.232, p ¼ .237].
Table 1 e Mean (untransformed) accuracy (ACC) and
reaction time (RT) in the sham and the anodal tDCS
sessions in the six learning blocks. SEM: standard error of
mean.

Block
number

Mean ACC ± SEM Mean RT ± SEM (msec)

Sham Anodal Sham Anodal

1 .69 ± .04 .69 ± .04 948.3 ± 41.0 951.0 ± 49.0

2 .79 ± .04 .75 ± .04 858.0 ± 45.9 862.1 ± 57.1

3 .82 ± .04 .81 ± .04 785.2 ± 48.7 816.8 ± 37.3

4 .85 ± .04 .81 ± .05 792.4 ± 38.5 778.0 ± 44.8

5 .85 ± .04 .80 ± .05 770.8 ± 47.2 751.8 ± 43.4

6 .88 ± .04 .83 ± .04 727.6 ± 42.3 734.0 ± 39.2

Mean ± SEM .81 ± .04 .78 ± .04 813.7 ± 43.9 815.6 ± 45.1
3.2.2. Analysis of the “choose A e avoid B” trial classification
scheme
A repeated-measures ANOVA on the arcsine square root

transformed accuracy measure revealed a significant main

effect of stimulation (F1,15 ¼ 6.412, p ¼ .023, h2
p ¼ .299) and sig-

nificant stimulation� feedback learning (F1,15¼ 5.115, p¼ .039,

h2
p ¼ .254). Post-hoc comparisons showed that in the anodal

tDCS condition, participants performed less well on “choosing

A” (calculated from the AC, AD, AE, and AF trials) when

compared to the sham tDCS session [t(15) ¼ �3.017, p ¼ .018]

(Fig. 4). No significant differences were found on the “avoid B”

[t(15)¼�.691, p¼ .5] (calculated from BC, BD, BE, and BF trials).
3.3. Analysis of the final Q-values at the end of the
learning phase

The final Q-values showed a significant main effect

(F1,75 ¼ 33.40, p ¼ 2.0 � 10�7, ƞ2 ¼ .338) of symbol. However,

none of these values were modulated by the stimulation

(F1,15 ¼ .93, p ¼ .35, ƞ2 ¼ .017) and stimulation by symbol

interaction (F1,75 ¼ 1.19, p ¼ .32, ƞ2 ¼ .0008). These results may

indicate that the participants did not differ in the two stimu-

lation conditions with regard to the ability to learn expected

reward values for each symbol.

3.3.1. Analysis of the RL parameters at the end of the learning
In order to maximize the likelihood of each participant's trial-

by-trial sequence individually for each participant, we fitted

the two free parameters a and b to the data from the learning

phase. Since the data were not normally distributed for either

the a or b parameters even after the arcsine square root

transformation procedure (ShapiroeWilk test; all

ps < 4.7 � 10�6), Wilcoxon signed rank test was performed on

the untransformed values. The analysis revealed a significant

difference in the b parameter [Z(15) ¼ 2.07, p ¼ .04] between

the anodal (.16 ± .02) and sham (.11 ± .02) stimulation

http://dx.doi.org/10.1016/j.cortex.2014.08.026
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Table 2 e The mean propensity to stay following positive or negative outcome calculated separately for the three different
symbol pairs. SEM: standard error of mean.

AB CD EF

Sham Anodal Sham Anodal Sham Anodal

p(stayjwin) ± SEM .86 ± .03 .78 ± .04 .81 ± .03 .79 ± .04 .75 ± .04 .72 ± .04

p(stayjlose) ± SEM .84 ± .03 .76 ± .05 .81 ± .04 .76 ± .05 .74 ± .04 .72 ± .04

Fig. 4 e Participants performed significantly worse

choosing A (calculated from AC, AD, AE, and AF pairs in the

transfer phase) in the anodal tDCS compared to the sham

tDCS condition, whereas avoid B (calculated from BC, BD,

BE, and BF pairs in the transfer phase) performance was

not influenced by the stimulation. Error bars represent

standard error of mean. Asterisk indicates a significant

difference.
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conditions, but not in the a values [Z(15) ¼ �1.09, p ¼ .3]

(anodal: .04 ± .01 and the sham .09 ± .06) (Fig. 5).

Because ML-based estimations sometimes have stability

issues (parameter identifiability problems; Rutledge et al.,

2009), we also ran a hierarchical Bayesian analysis as well as
Fig. 5 e The mean final value for the b parameter was

significantly higher in the anodal compared to the sham

stimulation condition. The a parameter in the anodal and

sham stimulation conditions was not significantly

different. The vertical axis uses estimated values.
a model incorporating a perseverance parameter (Rutledge

et al., 2009), for details on these analyses, see Supplemental

Methods and Results.
4. Discussion

The aim of the present study has been to investigate the role of

the prefrontal high-level cognitive component of instrumental

learning. Sixteen male participants were administered sham

and anodal tDCS using a double-blind, sham-controlled,

repeated-measures study design. Based on computer simula-

tions of the electric current flow in the brain (Windhoff et al.,

2013), we applied an electrode montage maximizing the cur-

rent distribution over left DLPFC, a brain region playing a key

role in high-level control of instrumental learning (Collins &

Frank, 2012; Daw et al., 2006). During the learning phase, we

observed a greater amount of behavioral shifting in the anodal

tDCS as compared to the sham tDCS condition in the ABpair. In

addition, fitting computational model parameters to the

behavioraldataalsoshowedthatparticipantsweresignificantly

impaired in exploiting the symbols associated with the higher

reward probability as evidenced by increased b values (indi-

cating increased randomness of choice) during learning and

decreased accuracy for choosing the better option in the trans-

fer phase in the anodal tDCS condition. Our findings comple-

ment previous computational, neuroimaging and genetic

studies that investigatedthe roleof theprefrontal component in

instrumental learning (Collins & Frank, 2012; Daw et al., 2006;

Frank et al., 2009; Frank et al., 2007) bymeans of a tDCSmethod.

In the anodal tDCS session, we observed more behavioral

shifts (i.e., choosing the alternative symbol in next trial)

relative to the sham tDCS session for the AB symbol pair

during the learning phase. Anodal tDCS decreased the prob-

ability of win-stay and lose-stay behavior, in other words,

participants shifted more often, both after positive and

negative feedbacks. The pattern of these findings indicates

that our participants showed increased shifting behavior,

since they changed their decision both after positive and

negative feedbacks. This was further supported by the

increased b parameter in the anodal relative to the sham tDCS,

which reflects increased randomness of choice.

A number of possible explanations can be provided for the

observed pattern of results. TDCS might have affected instru-

mental learning through the WM. Previous experimental evi-

dence suggests that the WM component provides the

possibility for a flexible behavioral control of instrumental

learning by actively maintaining the recently reinforced

reward values (Collins & Frank, 2012). Genetic studies and

computational modeling data indicate that in COMT Met in-

dividuals, the elevated PFC DA level may stabilize WM

http://dx.doi.org/10.1016/j.cortex.2014.08.026
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representations and participants effectively use this ability to

systematically adjust behavior on trial-to-trial basis following

negative outcomes (Frank et al., 2007). Evidence also indicates

that when participants performed in high and low WM-load

conditions, COMT Met homozygotes performed better

compared to Val carriers in the high (i.e., when the number of

stimuliwashigher), butnot in the lowWM-loadconditions (i.e.,

when the number of stimuliwas lower) (Collins& Frank, 2012).

Further, a recentstudyalso indicates leftDLPFC involvement in

the model-based control of decision-making via WM, as par-

ticipants with low WM capacity (and possibly with low DA

level) were impaired more after inhibitory continuous theta

burst stimulation (cTBS) than individuals with high WM ca-

pacity (Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013).

These findings congruently suggest that instrumental learning

engages the prefrontal component via the WM.

An important aspect of the present data is that the

behavioral effect was observed on the AB pair only even

though it did manifest globally in the temperature parameter

of the computational model. One possible explanation for this

result would be that the low- and high-level components may

be differently involved in instrumental learning based on

reward probability. When the reward probability can be reli-

ably separatedwithin a pair (e.g., 80/20% as in the AB pair), the

instrumental learning benefits more from WM system

involvement by actively holding reinforcement outcomes in

the WM. On the other hand, the active maintenance of the

reinforcement history of the less reliable pairs might be

beyond the capacity of the prefrontal system and therefore

predominantly recruits the low-level components. In other

words, prefrontal tDCS only interfered with the AB pair and

notwith the other pairs, since the reinforcement history of the

AB pair may rely on the WM system, which was affected by

tDCS. However, this account fails to explain the increased

behavioral shift after both positive and negative feedback.

Although the present experiment employed an electrode

montage that maximized the current distribution over the left

DLPFC, we cannot claim that anodal tDCS impacted the WM

component exclusively. The pattern of the present findings

indicates that our participants showed increased shifting

behavior, as they changed their decision after both positive

and negative outcomes. This is contrary to a previous genetic

study, where COMT Met carriers actively maintained recent

negative reinforcement experiences and corrected their

behavior on a trial-to-trial basis after negative outcomes

(Frank et al., 2007). Further, previous studies investigating the

left DLPFC found improvedWMperformance following anodal

tDCS (Zaehle et al., 2011), which would lead to more adaptive

trial-to-trial adjustment after negative outcomes and to an

increased learning rate (a value), similar to COMTMet carriers.

Interestingly, we observed only numerical differences in the

learning rate parameter between the stimulation sessions by

using the ML estimation technique (for the results of the hi-

erarchical Bayesian modeling see Supplemental Fig. 2).

Alternatively, anodal tDCS may have affected the explor-

atory behavioral component of instrumental learning. Since

we observed increased shifting behavior, i.e., an increased b

parameter without a significant difference in the learning rate

parameter, we conclude that a plausible explanation of the

current findings is that anodal tDCS increases the randomness
of choice. Current theory and experimental research on

exploration suggest that exploration is accomplished by

overriding an exploitative tendency of the striatal system by

the prefrontal component (Daw et al., 2006). Intriguingly, the

competition by mutual inhibition theory holds that decision-

making is influenced by the relative degree of inhibition and

excitation in the prefrontal cortex and consequently (Hunt

et al., 2012), would partially depend on the balance between

glutamatergic excitation and gamma-aminobutyric acid

(GABA)ergic inhibition (Jocham, Hunt, Near, & Behrens, 2012).

As anodal tDCS was shown to locally decrease the cortical

GABA level (Stagg et al., 2009), we might speculate that our

findings are the results of the decreased inhibitory GABA level

in the frontal cortex, which may in turn increase choice

randomness. Nevertheless, future neuroimaging experiments

are needed to investigate this speculation directly.

Further, our findings are in line with a previous tDCS study,

which applied anodal tDCS over the left DLPFC and observed

suboptimal decision-making performance following anodal

stimulation (Xue, Juan, Chang, Lu,&Dong, 2012). Although the

experimental paradigm was somewhat different from that of

the present experiment, the behavioral consequence of anodal

tDCSwas fundamentally equivalent in the two studies. Similar

to our results, participants stayed less often after positive

feedback, however, they also stayedmore often after negative

outcomes. Observing a brief and reversible decline in perfor-

mance during anodal stimulation is not unprecedented in the

literature (e.g., Ambrus et al., 2011), although it is commonly

thought that anodal tDCS leads to an increase in neuronal

excitability in the brain area underneath the electrode that

should result in performance augmentation in a given task.

However, it is hard to establish such a simple, linear and

mechanistic relation between stimulation parameters, direc-

tion of the cortical excitability change and expected behavioral

influence. In fact, this implicit assumption about the polarity

effect of tDCS and its physiological consequences were

recently questioned by a modeling study which showed that

tDCS electric fields can de- and hyperpolarize within the same

gyrus (Reato et al., 2013). Further, even in a homogeneous

electric field, different types of neurons are differentially

modulated based on their morphology and orientation

(Radmanet al., 2009). In linewith themodeling studies, ameta-

analysis on the effect of tDCS also supports the view that,

compared to the motor domain, the polarity effect is less

consistent on the cognitive domain (Jacobson et al., 2012).

An intriguing remaining question is whether tDCS

increased randomness of choice by affecting the prefrontal or

the striatal system. Positron emission tomography (PET)

studies conducted on transcranialmagnetic stimulation (TMS;

another non-invasive brain stimulation technique) found that

prefrontal TMS can have an impact on striatal DA release (Cho

& Strafella, 2009; Ko et al., 2008; Strafella, Paus, Barrett, &

Dagher, 2001). Unfortunately, the neurochemical effect of

tDCS is still unexplored, and our experimental design did not

allow us to directly answer this intriguing question as we lack

PET/fMRI data. On purely speculative grounds however, we

favor the view that the observed differences are mainly due to

prefrontal rather than striatal changes. First, based on the

present electrode montage, the computational model of elec-

tric current flow predicts that the electric field strengths in the

http://dx.doi.org/10.1016/j.cortex.2014.08.026
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striatum are several orders of magnitude smaller than in the

prefrontal cortex and are thus, very likely, not effective. In

addition, the electric field estimation results are in line with

previous fMRI findings showing local neurotransmitter change

in the neocortex (Stagg et al., 2009). In addition, a previous

functional neuroimaging study associated left DLPFC activity

with maladaptive decision strategy, which was further influ-

enced by anodal stimulation over the left DLPFC (Xue et al.,

2012). Further, recent work indicates that the excitation-

inhibition balance in the prefrontal cortex related to gluta-

matergic and GABAergic neurotransmitter balance (both of

these are affected by tDCS) can itself explain value-based

choice behavior variability (Jocham et al., 2012). Finally,

although an animal study showed that tonic extracellular DA

increase can influence exploration (i.e., the temperature or

noise parameter) in rats (Beeler et al., 2010), the exact mecha-

nism of how prefrontal tDCS could lead to altered striatal DA

release in humans is unknown.

In summary, the present study tested the possible

involvement of the prefrontal system in human instrumental

learning by means of tDCS. DLPFC was targeted using an

optimized montage based on computational electric field

simulations (Windhoff et al., 2013). Stimulation with anodal

tDCS increased behavioral shifting and decreased adaptive

behavior compared to sham tDCS, possibly reflecting inter-

ference with the prefrontal system. The complexity of our

results indicates that further studies are needed to investigate

the interaction between the low-level and high-level compo-

nents of instrumental learning.
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