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We introduce an approach to compensate for temporal distortions of repeated measurements in event-
related potential research. The algorithm uses a combination of methods from nonlinear time-series
analysis and is based on the construction of pairwise registration functions from cross-recurrence plots
of the phase-space representations of ERP signals. The globally optimal multiple-alignment path is
approximated by hierarchical cluster analysis, i.e. by iteratively combining pairs of trials according to
similarity. By the inclusion of context information in form of externally acquired time markers (e.g.
reaction time) into a regularization scheme, the extracted warping functions can be guided near paths that
are implied by the experimental procedure. All parameters occurring in the algorithm can be optimized
based on the properties of the data and there is a broad regime of parameter configurations where
the algorithm produces good results. Simulations on artificial data and the analysis of ERPs from a
psychophysical study demonstrate the robustness and applicability of the algorithm.

Keywords: Event-related potential; dynamic time warping; cross-recurrence plot; line of synchrony; hier-
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1. Introduction

Variability in processing speed and the ensuing vari-
ability in the timing of signal features is an impor-
tant modulating effect in the analysis of EEG data.7

This is particularly true in the study of event-related
potentials (ERPs), where the timing and amplitude
of signal features is compared over experimental
conditions. ERPs are segments of electroencephalo-
graphic data that are locked to an external event.
Usually, signals from multiple trials of the same
experimental procedure are averaged in order to
improve the poor signal-to-noise ratio of single trial
data. There is a large body of research that relies
exclusively on the interpretation of modulations of
signal features in averaged ERPs and it is therefore

crucial that the averaged potentials include all mean-
ingful features. In the following, we will discuss short-
comings of the widely used pointwise average and
propose an alternative estimator of the underlying
signal.

Averaging procedures are based on statistical
models of the data. We will start with a simple model
that implies pointwise averaging and proceed to more
complex models that follow from the phenomenol-
ogy of ERPs and provide a more realistic descrip-
tion of the data. Assume we have N signals si(t),
i = 1, . . . , N , measured in a time interval T (with-
out loss of generality T = [0, 1]). Assuming that the
data s has been generated by a noisy and stationary
process, the individual trials can be described by a
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pointwise sum of the stationary signal and noise

si(t) = s0(t) + η, (1)

where the noise term η is independent across tri-
als and of zero mean. It follows that the pointwise
average

ŝ0(t) = 〈si(t)〉i :=
1
N

N∑
i=1

si(t)

of the individual trials results in an unbiased and
optimal estimate in the mean-square error sense,
since

ŝ0(t) = 〈si(t)〉i = 〈s0(t) + η〉i = s0 + 〈η〉,

if the noise has zero mean. Therefore, averaging over
a sufficient number of trials eliminates the noise leav-
ing the constant signal intact.

Differences of processing speed and hence in
the time scale of single trials are obviously ignored
by this scheme. In case of trial-dependent tem-
poral variations, the assumption of an underlying
isochronous signal s0(t) is questionable and the
pointwise average results in a sub-optimal estimate
of the signal (i.e. it does not converge against the
true signal s0). Previous research suggests that trial-
dependant signal modulation is prominent in ERP
data31: statistical coherence measures calculated on
signal residuals si − 〈si〉i show significant deviations
from the assumption of zero-mean and independant
and identically distributed noise that is inherent to
model (1).

Several techniques have been proposed to deal
with the issue of temporal variation across trials. In
Ref. 31 the model si(t) = s0(t − τi) + η was inves-
tigated. It includes a trial-dependent time shift τi

that can be compensated for easily (e.g. by a cross-
correlation based technique35). Another attempt to
compensate for temporal distortion prior to aver-
aging used parametric functions7: The authors pro-
posed to stretch or compress the single signals in
order to match the average reaction time, by moving
the sampling points in time according to a linear,
quadratic, cubic or quartic function. However, the
choice of the adequate warping function remains an
open question.

The assumption of a specific class of distortion
functions is a strong restriction that has been gener-
alized by considering order-preserving time warping

of the data in the generating model

si(t) = αis0(φ−1
i (t)) + η, (2)

where φi : T → T are monotonous time-distortion
functions (also called alignment, warping or registra-
tion functions) and αi > 0 scaling constants.10,11,32

Following this model, an adequate average would
compensate for the trial-by-trial temporal
variation

ŝ0(t) =
1
N

N∑
i=1

si(φi(t)), (3)

where the φi functions are the solutions to the vari-
ational problems

φi = argmin
φ

∫
T

d(s0(t), si(φ(t))) dt, (4)

d being an adequate distance function (e.g. Eucli-
dean). Obviously, the problem from Eq. (4) can-
not be solved directly because the true signal s0

is unknown and the time-distortion functions used
to form the improved average from Eq. (3) must
therefore be estimated from mutual relations among
the trials. Mathematically, the problem 4 is ill-posed
because the condition of monotonicity and possibly
further constraints such as on the smoothness of φ

are not included in its formulation.
Previous approaches to the approximation of the

φi functions in absence of the true signal used e.g. an
iterative algorithm to solve the Euler-Lagrange equa-
tions corresponding to the variational problem 4.
These have to be satisfied for any minimal solution
of the integral over a cost-functional

F (φ1, . . . , φN )(t) =
N∑

i=1

d (si ◦ φi, 〈sj ◦ φj〉j)

that minimizes the deviation of the warped-average
from the individually warped curves.34 Other
approaches calculated pairwise registration functions
and iteratively combined pairs of trials to form an
improved average (e.g. Refs. 26 and 33).

While the latter approach does not yield an
explicit estimate of the alignment functions φi (only
the average curve is constructed), it is attractive from
a computational perspective because the globally
optimal alignment of two curves can be efficiently
calculated using a dynamic programming strategy
called dynamic time warping (DTW).22 Dynamic
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time warping has already been used in an EEG con-
text for classification16 and averaging.26 For exam-
ple, Picton26,27 proposed an unrestricted dynamic
time-warping strategy on raw EEG data to estimate
the warping function between single trials. How-
ever, this method lacks the robustness required in
the application to noisy ERP data. Previously, we
have extended this approach by a guided regular-
ization scheme, making it applicable also to noisy
data.10,11

Here, we will introduce a novel method for the
estimation of the structural average in Eq. (3).
Our approach is based on (cross-)recurrence plots4

which emerge in nonlinear dynamical system analysis
when comparing time-series from the same dynami-
cal system in terms of trajectories through a recon-
struction of their phase-space. The line-of-synchrony
extracted from these plots can be used to effi-
ciently extract a warping function for two time-
series in a nonparametric fashion. The generality
of this approach requires regularization of the solu-
tion in order to reduce the effects of overfitting. By
introducing context-information into the regulariza-
tion scheme, we construct a meaningful regulariza-
tion function that reduces the ambivalence of the
distortion function and increases the specificity of
the reconstructed signal. For the construction of the
structural average, we implement a hierarchical pair-
wise averaging scheme that establishes a number of
candidate solutions within clusters of similar trials
which then can be used with increased confidence
to identify warping functions also for across-cluster
comparisons.

The remainder of the paper is organized as fol-
lows: First we will discuss the general approach to
the construction of the improved average; Next, we
present the theoretical background for the building
blocks of the algorithm, namely phase-space anal-
ysis and cross-recurrence plots as well as dynamic
time-warping which is used for line-of-synchrony
extraction. Furthermore, we discuss our regulariza-
tion scheme that allows to incorporate meaning-
ful context-information into the estimation of the
warping functions. Finally, we present results on sim-
ulated ERP data and data acquired from a psy-
chophysiological experiment. The source code of
the described algorithms is freely available in the
software library libeegtools.12

2. Methods

As discussed above, when estimating the structural
average curve from Eq. (3), we need to rely on mutual
relations among trials to estimate the optimal distor-
tion function that aligns a single trial with the true
signal s0. We therefore consider the minimum of the
functionals

Jij(φ) =
∫
T

�d(si ◦ φ, sj) + (1 − �)G(φ) dt, (5)

where si and sj are two different trials (i �= j),
d : R × R → [0, 1] is a normalized distance func-
tion and G : V → [0, 1] is a regularization term that
penalizes irregular paths. The parameter � ∈ R spec-
ifies the mutual impact of the two terms. The global
minimum of Eq. (5) in the space of monotonic, dif-
ferentiable functions V ⊂ C1 can be calculated effi-
ciently by dynamic time-warping.

In the following, we present our choice of the dis-
tance d which is based on cross-recurrence plots and a
method to include context-information into the reg-
ularization term G. Furthermore, we will address the
issue of moving from Eq. (5) to the case of aligning
N trials in a structural average (see Fig. 1 for an
outline of the complete algorithm).

2.1. Phase space reconstruction

In empirical studies, the different variables of an
observed dynamical system are often not directly
measurable. EEG potentials, e.g. are produced by
the activity of large numbers of neurons which can
neither be measured simultaneously nor are all indi-
vidual neurons of equal importance in a given task.
Nevertheless, it is possible, at least for stationary
data, to reconstruct the essential dynamics from the
observable signals.25 This is reflected in a growing
body of research in the EEG community that ana-
lyzes EEG data in a reconstructed phase space rather
than using classical signal processing tools.23,29

While there are several options for constructing
an appropriate embedding (mathematically this is
a diffeomorphism of the original phase space) e.g.
with multi-channel recordings,3,14 using a time-delay
embedding24,30 is an attractive approach. This is due
to the fact, that a one-dimensional time series s(t)
is sufficient for the reconstruction of the possibly
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Fig. 1. Summary for the proposed algorithm. A pair of signals is embedded in a reconstructed phase-space (6) and the
time-distortion function φ is reconstructed from their CRP. The trials are then combined and the parent node of the
signals is replaced with their average. Numbers in parentheses refer to equation numbers.

high-dimensional phase-space x(t) ∈ R
m

x(t) =
m∑

j=0

s(t − jτ)ej (6)

with ej being the unit vector along the jth coordi-
nate of the embedding space and m and τ param-
eters of the embedding. In the remainder of this
paper, we will use time-delay embeddings because
often only few electrodes are of interest for a specific
research question. The methods easily generalize to
multi-channel or a combination of multi-channel and
time-delay reconstruction.

The time-delay embedding (6) depends, however,
strongly on the choice of the embedding dimension m

and the time lag τ (usually a multiple of the sampling
time ∆t). Finding optimal values for the two param-
eters is not trivial and has been subject to intense
research.6,15 Optimality in the present problem is
characterized, on the one hand, by the representation
of the dynamical properties of the data that might
not be captured by low-dimensional embeddings. On
the other hand, high embedding dimensions might
compromise the locality of information entering the
warping procedure and decrease performance of the
algorithm.

The minimal embedding dimension m that still
covers the pertinent information in the data can be
determined by the false nearest neighbors method.15

“False” neighbors (due to a too small embedding
dimension) are detected using the fact that they dis-
appear when increasing the embedding dimension
by 1. The number m is the smallest dimension for
which an increase of the embedding dimension does

not lead to a further decrease of the number of near-
est neighbors. Furthermore, we use an information-
theoretic approach6 to estimate the time lag τ by
the first local minimum of the mutual information.
The mutual information is considered to be a better
criterion than the autocorrelation function, because
it measures the probabilistic dependence rather than
only a global linear dependence.6 For results of these
parameter estimation procedures, see Sec. 3.2.

2.2. Recurrence plots

Recurrences, i.e. points in state space that are vis-
ited more than once, are fundamental characteris-
tics of many dynamical systems, ranging from the
financial market to epidemics and brain dynamics.20

In order to visualize and quantify such recurrences,
Eckmann4 introduced the notion of recurrence plots
(RP). Considering a general dynamical system

dx(t)
dt

= f(x(t)),

where x(t) ∈ R
m and t ∈ T , we define its recurrence

plot as

Rx
ε (t1, t2) = Θ(ε − ||x(t1) − x(t2)||), (7)

where t1, t2 ∈ T and Θ the Heaviside step function,
i.e. Rx

ε : T 2 → {0, 1} is a binary function that is
equal to one whenever the trajectory in phase space
falls within an ε-ball of a previously visited point and
zero otherwise. A recurrence plot provides a visu-
alization of the dynamics of the underlying system
including information about stationarity, cyclicism,
laminar states etc. (for a review see Ref. 20).
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The determination of a suitable threshold ε from
Eq. (7) for signal-analysis with recurrence plots
remains an open research problem.18 In fact, the
“optimality” of any chosen threshold depends on the
task to which the RP is going to be applied. For an
example of the impact of different threshold choices,
see Fig. 2. In order to determine the neighborhood
criterion we apply a fixed amount of neighbors (FAN)
criterion in order to determine ε on a per-point basis
for each point t on the trajectory.20 That means, that
ε(t) is determined such, that each point has the same
amount of neighbors. The advantage of this proce-
dure is the elimination of the impact of any scale
difference in the applied curves such that no ampli-
tude normalization is necessary. In our simulations,
we use a constant fraction κ of the number of samples
n, i.e. ε(t) is determined, such that∑

t′
Rx

ε (t, t′) = �κn	, (8)

where �·	 rounds its argument to the smaller of the
two nearest integers. For the estimation of κ, we
apply a criterion that measures the visibility of the
structures in the RP that are critical for our method
and penalizes an excessive number of recurrences in
the plot (see Sec. 3.2).

Recurrence plots have been applied to ERP
data13,19,20 for analyzing properties of the brain as a

Fig. 2. A CRP calculated for two trials from an artificial
data set, see Sec. 3.3 and various values of κ, Eq. (8).
Since the data is generated from the same underlying
model, the plot shows a line-of-synchrony in red that goes
through the simulated reaction times (cross). Different
shades of gray convey recurrences for different values of κ
while black denotes non-recurrences for any of the plotted
κ-values (see legend). The LOS is already well visible for
small values of κ (e.g. κ = 0.05).

dynamical system. Here we are proposing a method
based on recurrence plots for the synchronization of
individual trials prior to averaging their ERPs. In
order to reduce distortions of the average due to tim-
ing variability of the curve we employ a detection of
the line of synchrony in the cross-recurrence plot of
the ERP of two trials.

2.3. Line-of-synchrony detection in
cross-recurrence plots

A generalization of recurrence plots are the so-
called cross-recurrence plots (CRPs) where two sig-
nals are simultaneously embedded into the same
phase space.20 For this embedding to be meaningful,
both signals must be measurements from the same
underlying dynamical system. The cross-recurrence
plot is given by

Cx,y
ε (t1, t2) = Θ (ε − ||x(t1) − y(t2)||) , (9)

where x, y ∈ R
m are the phase space trajectories of

the two signals. The parameter ε is determined using
Eq. (8) and will be henceforth omitted.

It has been shown, that CRPs of similar sig-
nals with varying time scale, show a “distorted main
diagonal”, the line of synchrony (LOS), that can be
extracted and used for resynchronization21,36 (see
Fig. 2). This approach has been applied to geological
data21 and was found to yield results comparable to
manual tuning. The algorithm from Ref. 21 applies a
recursive growing-window strategy where a window
is placed around the current LOS end point. The
window grows into x or y direction until no addi-
tional recurrence sites are covered by enlarging its
size. The geometric mean of the current LOS end
point and the last detected recurrence site is the next
point of the LOS. The method is parametrized by dx

and dy, the maximum size of the window in x and y

direction, respectively. It has been shown, that this
algorithm works quite well for small deviations from
the main diagonal. However, applying the method
to EEG data is a somewhat more delicate under-
taking, because (i) the initial signal-to-noise ratio
is extremely low, (ii) the temporal variability can
be quite large10 and (iii) the underlying signals can
be different. In behavioral experiments, large varia-
tions in reaction times are observed28 that are not
even one order of magnitude smaller than the mean
reaction time. Assuming the reaction times to indi-
cate equivalent states of the brain dynamics in two
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trials, we have to accept that a significant tempo-
ral distortion of the signal must have occurred. We
were therefore led to propose a nonparametric and
more flexible algorithm for determining the line of
synchrony that is based on a dynamic time-warping
strategy.

2.4. An algorithm for line-of-synchrony
extraction

We aim to optimize the number of recurrences on
the LOS while simultaneously minimizing its length.
Let φ′ be the first derivative of φ, then our goal is to
maximize the line integral over the cross-recurrence
plot (i.e. the number of recurrences along the
path) ∫

T
Cx,y(t, φ(t))

√
1 + φ′(t)2 dt (10)

and to minimize the length of the path∫
T

√
1 + φ′(t)2 dt (11)

for φ ∈ V as before and boundary conditions φ(0)= 0
and φ(1) = 1.

When dealing with binary functions Cx,y, there
are many possible solutions for minimizing Eq. (10)
because in a neighborhood containing zeros, it is
arbitrary which path is taken. We therefore restrict
our search space to all paths satisfying Eq. (10) and
minimize Eq. (11) in this restricted space.

In practice, we perform the simultaneous opti-
mization of Eqs. (10) and (11) by a single application
of the dynamic time warping algorithm (DTW)22

to a modified recurrence matrix. DTW finds the
monotonous path through a discrete distance matrix
di,j that minimizes the sum of the matrix entries
along that path. In other words, DTW finds the opti-
mal alignment p̂ = ((l1, k1), . . . , (lK , kK)) between
two discrete signals ui = s1(i∆t) and vj = s2(j∆t)
for i, j = 1, . . . , n and i∆t ∈ T of the form

p̂ = arg min
p

∑
(l,k)∈p

d(ul, vk) (12)

for a cost function d. Equation (12) is a dis-
cretized version of the variational problem from
Eq. (5). DTW applies a dynamic programming
strategy that can be efficiently calculated in O(n2)
(but there are optimized algorithms that run in

O(n log n)2). In summary, the algorithm operates by
cumulating di,j

Di,j = di,j + min {Di,j−1,Di−1,j ,Di−1,j−1} (13)

and subsequently backtracking the minimal adjacent
element through D. The details of the DTW algo-
rithm are discussed elsewhere22 as well as how it can
be applied to EEG data analysis.10,11,26

In our case, application of DTW to the binary
matrix 1 − Cx,y(t1, t2), where t1, t2 ∈ {i∆t | i∆t ∈
T ; i = 1, . . . , n} results in the warping function min-
imizing the number of non-recurrences along the way,
i.e. maximizing Eq. (10). As stated above, there is
more than one solution to this minimization since
the cost is not influenced by additional zeros along
the path. To impose the path length criterion from
Eq. (11), we modify the recurrence matrix that enters
the DTW algorithm such that

dt1,t2 = (1 − Cx,y(t1, t2)) + η, (14)

where η is uniformly distributed uncorrelated posi-
tive noise of an amplitude much smaller than 1. The
amplitude of the noise must be chosen such that the
expectation of the sum of all noise components is less
than 1

E

(∑
t1,t2

η

)
= E(n2η) = n2E(η) < 1. (15)

This choice ensures that no recurrence is neglected
due to the impact of the cumulating noise compo-
nent. There are two effects of the added noise com-
ponent: First, since η > 0, it serves as a soft penalty
of the path length. Second, the noise breaks the tie
if the backtracking stage of the algorithm faces iden-
tical values.

We combine the two signals using the solution to
Eq. (5) thus acquired by simultaneously averaging in
time and amplitude(

t̂

ŝ

)
=

1
2

(
t1 + φ(t1)

s1(t1) + s2(φ(t1))

)
(16)

and find the sampling points of the original time scale
by interpolation.

2.5. Regularization

For real EEG data, it is not always clear that the
data generated during identical trials are realiza-
tions of the same cognitive processes. It is therefore
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well possible that the embedding in the same phase-
space will in practice not yield satisfactory results
(i.e. the CRP does not show a distorted main diago-
nal). Because the DTW strategy from Sec. 2.4 finds
the globally optimal minimum of the warping path,
it can yield pathological warping functions for such a
case. It is therefore crucial to apply a regularization
rule that avoids such cases.

Obviously, the quality of the result can be
improved by using prior knowledge. Relevant criteria
can be smoothness or the deviation from the non-
warped case but also context information from the
experimental protocol. In the following, we will pro-
pose a strategy that makes use of timing information
available from the experimental context to avoid too
irregular paths.

2.5.1. Cross-recurrences with external events

In behavioral experiments, subjects usually perform
some task while the EEG data is recorded. From
the subject’s behavior, context information can be
extracted that bears the potential to improve the
results in the analysis of EEG data. In simple tasks
requiring a single action of the subject, the reaction
time is a valuable event and has already been used to
improve averaging.7 However, in many cases not only
the reaction time is available, but the experimental
protocol allows also for the recording of other dis-
tinct temporal events that can be matched to the
time course of the recorded EEG data. We refer to
these points in time as time markers and label the
ith marker (i = 1, . . . , M) in trial j by τi,j .

In fact, the stimulus onset is the most obvious
time marker. It provides the basis of ERP because
it is used for segmenting the continuous stream of
EEG data into ERP segments. If the experimental
task includes e.g. button-presses, utterances or spe-
cific movements it is possible to record more than
just this fundamental time marker. Given that these
markers occur similarly in all trials but with a tem-
poral variation, one could argue for using this behav-
ioral information to guide the distortion function
through corresponding points in time as measured
by these markers. Reference 7 already used such an
approach using a specific time-marker, the reaction
time, as the defining property of the warping func-
tion. The method discussed here is a generalization
of this approach and includes it as a special case.

In order to use the time markers to bias the search
for the distortion function in favor of those functions
that map τi,j to τi,k (where j �= k are two trials),
we propose the following regularization scheme: Con-
sidering the series of time markers τ1,j , . . . , τM,j , we
construct a function f : T → T as a piecewise
interpolation between (τi,j , τi,k) and (τi+1,j , τi+1,k)
for all i. We realize a regularization function as a
two-dimensional Gaussian

Gf (x, y; σ) =
1

2πσ
exp
(
−∆{f}(x, y)

2σ2

)
(17)

calculated on the distance transform ∆{f} of f

which computes the minimum Euclidean distance
from the embedding of f in R

2 and thus forms a
“Gaussian corridor”. The distance transform ∆{f}
of an (n − 1)-dimensional function f is a scalar
function of dimension n and defined as the minimal
Euclidean distance from each x ∈ R

n to the manifold
F = {xn = f((x1, . . . , xn−1)T )} ⊂ R

n that is

∆{f}(x) = min
ξ∈F

‖ξ − x‖2.

We implement an efficient algorithm for calculating
the distance transform of a two-dimensional func-
tion, the dead-reckoning algorithm from Ref. 8.

Using the distance transform realizes a flexible
strategy where a variety of different prior informa-
tion can easily be integrated to find more suitable
solutions. Reference 7, e.g. argued that a close-to-
quadratic warping function between time-markers is
realistic because brain activity from cognitive pro-
cesses should be similar close to a stimulus and begin
to diverge later. Including such prior information is
easily done by simply connecting the time-markers
with functions that feature parabolic deviations from
the connecting line instead of straight lines when con-
structing f from Eq. (17).

If there is high confidence in the recorded time-
markers, a stricter regularization that more explicitly
guides the distortion function through corresponding
time markers between trials can be used. Define σ

from Eq. (17) to be dependent on the distance of the
orthogonal projection of any point (x, y) on f to the
closest time marker along f

d⊥(x, y)

= min
i

{√
(x − τi,j)2 + (y − τi,k)2 − ∆{f}(x, y)

}
(18)
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Fig. 3. Sketch of the regularization matrix. The stan-
dard deviation of the Gaussian σ varies with distance to
the closest time marker d⊥ and narrows down to guide
the path through corresponding markers.

by choosing

σ(d⊥) =




σmax if d⊥ > d̂⊥

(σmax − σmin)d⊥d̂−1
⊥

+ σmin otherwise.

(19)

Here, σmin and σmax are parameters that specify the
tolerated deviation from a linear displacement as in
Ref. 7 and d̂⊥ is the distance at which the Gaus-
sian corridor begins to narrow down to the closest
time marker (see Fig. 3). In the discrete case, σmax

should be normalized by
√

2N − 1 before evaluating
Eq. (19). The parameter σmin reflects the confidence
in the externally recorded time-markers and is nec-
essary for numerical reasons (we chose σmin = 0.05).

Finally, the regularization term is added to the
distance function 14 and the variational problem
from Eq. (5) is solved by dynamic time-warping. The
choice of the two main regularization parameters �

and σmax is discussed in Sec. 3.2.

2.6. Hierarchical averaging

The regularization helps to avoid pathological paths
that can e.g. occur when the two signals are emitted
by different dynamical systems due to diverging cog-
nitive processes involved. An even better approach
would filter such cases and only combine trials that

can be assumed to have been generated from a simi-
lar system. Technically, one of the many classification
techniques such as support-vector machines (SVM)
or neural networks can be used. These methods have
successfully been applied to EEG-data to classify
mental tasks17 or to identify epileptic seizures.5 How-
ever these methods group the data into a given num-
ber of discrete classes. For our averaging procedure,
a hierarchical method seems to be more suitable
since it allows to iteratively combine trials of growing
diversity.

Previously, averaging of N signals was achieved
by subsequent application of Eq. (16) to trials drawn
randomly without repetitions from {1, . . . , N}.26
However, a more suitable method seems to be the
application of a hierarchical approach, i.e. similar tri-
als are averaged prior to dissimilar ones. This is due
to the fact that warping is more easily accomplished
and yields numerically more stable results, the better
the match of the two curves. We therefore argue for a
hierarchical averaging procedure that combines the
most similar trials before integrating the resulting
average with the other trials in a tree-like fashion. In
fact, this corresponds to a hierarchical cluster anal-
ysis and can be done by using the complete-linkage
distance between clusters I and J

∆({si | i ∈ I}, {sj|j ∈ J}) = max
i∈I,j∈J

D(si, sj) (20)

and building a dendrogram according to ∆. Here, D

is a distance metric between two trials given e.g. by
the warp distance

D(si, sj) = min
φ

∫
T

d(si(t), sj(φ(t)))
√

1 + φ′(t)2 dt

(21)

or its regularized variant. Using the warp-distance
has the advantage of comparing the trials on the
basis of their general shape rather than pointwise
discrepancies. The averaging is done by adding cor-
responding points in both signals by modifying
Eq. (16) as(

t̂

ŝ

)
=

1
ω1 + ω2

(
ω1t1 + ω2φ(t1)

ω1s1(t1) + ω2s2(φ(t1))

)
, (22)

where ω1 and ω2 are the numbers of trials already
averaged in each of the current nodes. This pro-
cedure achieves averaging both in time and ampli-
tude and results in a proper weighting of the
impact of the single-trial curves in the final average.
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Fig. 4. Using a hierarchical cluster-analysis based on
signal-shape similarity (Eq. (20)), trials are progressively
combined (Eq. (22)) to form a final average: each node
that is the parent of exactly two leaves is replaced by
the warped average of the two children. This procedure
is repeated until a single average is obtained at the root
node.

Figure 4 illustrates the process of hierarchical aver-
aging. Notewhorthy is that at this stage, possible
outliers in the data can be be identified from the tree
structure. Branches that contain single trials but join
the tree only near the root may be pruned (such as
the right-most branch in Fig. 4) if this can be justi-
fied within the context of the experiment.

3. Results

3.1. Construction of Artificial Data

In order to test the consistency of the algorithm,
we construct artificial data to closely resemble our
experimental data (see Sec. 3.4). Correspondingly,
we generate single trial traces on the interval T =
[−500 ms, 2000 ms] from a template s0 that is of a
typical ERP shape (see Fig. 5). Using the model from
Eq. (2) we construct distortion functions φi based
on a biased random walk where the probability to
move away from the linear interpolation through cor-
responding time-makers decays with the distance to
this function. In addition to the constant stimulus-
onset marker τ1,0 = τ1,i = 0ms, we generate realistic
reaction-times τ2,i ∼ N (τ2,0, σrt) where the tem-
plate’s reaction time was chosen to be τ2,0 = 800ms
and σrt = 100ms which is of a similar magnitude
to our real EEG data (see Sec. 3.4). Here N (µ, σ) is
the normal distribution with mean µ and standard
deviation σ. The signal is multiplied by a constant
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Fig. 5. Construction of the artificial data. A template
is constructed manually (a) from which temporally dis-
torted and rescaled versions are derived (b). Finally, noise
is added to the single-trial data (c).

term α and subject to a significant amount of white
gaussian noise

η ∼ N (0, β2),

where β controls the amplitude of the added noise.

3.2. Parameter estimation

There are five parameters to be chosen when
applying the discussed algorithm: besides choosing
the embedding parameters m and τ , there is the
recurrence-plot paramter κ controlling the number of
recurrences as well as the regularization parameters
� and σmax. We discuss our choice of the embedding
parameters that is based on state-of-the-art meth-
ods from nonlinear time-series analysis. Our deter-
mination of the regularization parameters is based
on cross-validation.

3.2.1. Embedding arameters

The embedding parameters mopt and τopt must be
estimated from the data. Applying the false-nearest-
neighbors method15 to our ERP-data (see Sec. 3.4)
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Fig. 6. Percentage of false nearest neighbors (FNN) as a function of embedding dimension m (left plot). After mopt = 10,
no false nearest neighbors are detected. Right plot: the first local minimum of the mutual information I estimates the
optimal time lag τopt (first zero-crossing of the first derivative of I).

we obtain an estimate of mopt = 10, see Fig. 6.
This is a similar value as found in earlier studies
that estimated time-delay embedding parameters for
ERP data.13 The first local minimum of the mutual
information6 provides an estimate for the time-lag of
τopt = 18 sampling units which seems to be feasible
for data sampled with 1000Hz (Fig. 6).

An appropriate value for the parameter κ for
the construction of the cross-recurrence plots ensures
that the line-of-synchrony is well visible but not too
thick. To determine such a value, we calculated the
criterion

crit(κ) =
2

N(N − 1)

∑
i�=j

Φ(κ, C
xi,xj
κ , φ)

L(φ)κ
(23)

with L being the arc-length of φ (Eq. (11)), Φ the
line-integral of the LOS φ (calculated for an initial
guess for κ) over the CRP as in Eq. (10). Because κ ∈
[ 0, 1] is proportional to the number of recurrences in
the CRP

κ ∼
∫∫

t1,t2

Cxi,xj
κ (t1, t2) dt1dt2

(see Eq. (8)), measure 23 penalizes an increasing
number of recurrences while requiring a large num-
ber of recurrence points on the LOS. From Fig. 7,
we can deduce that values in [0.05, 0.13] are suitable.
We choose κ = 0.1 for all following simulations.

3.2.2. Regularization parameters

For the artificial data, we can directly calculate how
closely the final average resembles the original data
curve from which it was generated. Figure 8 shows
the warp-distance between original and reconstruc-
tion depending on the regularization parameters.
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Fig. 7. Parameter scan for the CRP-parameter κ, see
Eqs. (8) and (23). The criterion is maximized in the range
[0.05, 0.13] and we choose the value κ = 0.10 for our
simulations.
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Fig. 8. Reconstruction results (normalized warp-
distance to the underlying signal) of our method for
various values of � and σmax for N = 50 trials of arti-
ficial ERP-data using the stimulus-onset and reaction-
time markers τ1,i, τ2,i. The algorithm is very robust with
respect to the choice of the parameters and produces bet-
ter results than the conventional average (gray plane) for
all settings of the regularization parameters.
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We chose the warping distance D from Eq. (21)
because we are interested in recovering the shape of
the signal, rather than minimize the pointwise devia-
tions. Obviously, the method is very robust concern-
ing the choice of these parameters and it performs
significantly better than the conventional, pointwise
average. For an example of reconstructing the gener-
ating signal for our artificial data, see Fig. 11. These
simulations used the stimulus-onset and reaction-
time markers τ1,i, τ2,i that were used to generate the
single-trial artificial data (Sec. 3.1).

In the case of real EEG-data, the regularization
parameters are conveniently determined by Leave-
One-Out crossvalidation (cf. Ref. 9). The following
expression is minimized

CV (�, σmax) =
1
N

N∑
i=1

D(si(t), 〈sj(t)〉−i
�,σmax

), (24)

where 〈sj(t)〉−i
�,σmax

is the regularized average leav-
ing out trial i, i.e. it is calculated for j = 1, . . . , i −
1, i + 1, . . . , N . Figure 9 shows the result for our
EEG-data set. Apparently, the distance and the reg-
ularization terms in Eq. (5) should receive about
equal weight (� ≈ 0.5) while the σmax parame-
ter should be set quite narrow σmax ≈ 0.1. This
means that for our data, the time-markers do indeed
add significant information to the formation of the
average which should be closely followed by the reg-
istration functions. We used the stimulus-onset and
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Fig. 9. Normalized crossvalidation score for reconstruc-
tion based on the DTW metric as a function of the
parameters � and σmax for real ERP data, N = 52 (see
Sec. 3.4). There is a unique minimum at � ≈ 0.5 and
σmax ≈ 0.1.
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Fig. 10. Reconstruction error as a function of noise
amplitude for artificial data. While the error for our
reconstruction method (black) increases with growing
noise amplitude β, its slope is less steep than that of
the conventional average (dashed).

the response-onsets of the individual trials as time-
markers for our approximation of the average curve.

3.3. Reconstruction results for
artificial data

For artificial data (see Sec. 3.1), we can directly cal-
culate the reconstruction error because the “true”
signal s0 is known. Again using the warping distance
21, we can see that the reconstructed signal using our
method more closely resembles the generating signal
than the pointwise average, see Figs. 10 and 11. The
slope of the reconstruction error with growing noise
intensity is less steep than for the pointwise average.
Thus, the method can be confidently applied also to
data that is contaminated with strong noise. Because
we encounter high noise levels in realistic settings,
stability against the noise is an important feature of
any algorithm for the analysis of ERP data.

Finally, we show examples for the temporal aver-
aging based on the extracted LOS. In Fig. 11, the
shape of the original signal (white) can be recovered
even from very noisy data (gray curves are single tri-
als). In contrast, the conventional pointwise average
(dashed) washes out some of the peaks.

3.4. EEG data from a
psychophysiological study

The data presented here was recorded in a psycho-
physical priming experiment involving the presen-
tation of overlapping pictograms. The experimental
protocol demanded a vocalized response by nam-
ing one of the pictograms with a matching label
(for details of the experimental setup and the
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Fig. 11. Reconstruction of the signal s0 (white) from very noisy single-trial data (gray, β = 6, N = 30). Our algorithm
(black) is able to reconstruct all major features of the waveform, while the conventional average (dark gray) washes out
some of the peaks/throughs.
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Fig. 12. Real ERP data from 134 trials at electrode location CPz. Our resynchronization method (solid) shows more
pronounced and better localized peaks (e.g. P300) than the conventional average (dashed). The single trials (grey) were
transformed for plotting according to the described algorithm (i.e. the plot shows si(φ(t))).

recording equipment, refer to Ref. 1). We could there-
fore use two time markers for our analysis, stimulus
and response onset.

The EEG was recorded in 50 trials from 63
head electrodes arranged in an extended 10–20
system, using a 64-channel BrainAmp MR ampli-
fier and an electrode cap (Brain Products Inc.,
Germany) with sintered Ag/AgCl electrodes. The
sampling rate was 1,000Hz and band-pass was set
to 0.1–70Hz. Vertical electro-oculogram (EOG) was
monitored from an electrode positioned 1 cm below
the right eye. The FCz electrode served as active ref-
erence. All impedances were kept below 5 kΩ. Before
data analysis with our method, EEG segmentation
was performed, resulting in [−200, 2000]ms epochs,
with zero indicating probe display onset. Epochs
were then baseline-corrected with respect to the
[−200, 0]ms interval, and an initial artifact rejection

was performed to identify epochs with technical arti-
facts (i.e. amplitudes exceeding 1 mV). Finally, we
applied a bandpass filter with cutoff frequencies 0.5
and 20Hz.

The results of the application of our method to
the data are exemplified in Fig. 12. Our average pro-
duces pronounced peaks in the expected time win-
dow (e.g. P300) that are better visible and more
tightly localized in time than when using conven-
tional averaging. In addition, the shape of the aver-
age shows more variations and several peaks and
throughs become visible that are not detected by
the pointwise average. The hypothesis underlying our
averaging procedure was that important signal mod-
ulations were washed out by cross-sectional averag-
ing and it is therefore not surprising that additional
peaks and throughs are visible in our approach.
Obviously, however, it remains to be tested whether
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these features are actually reproducible in real ERP-
studies, a question that should be the objective of
future investigations.

4. Conclusion

We presented an algorithm for the estimation
and compensation of temporal distortion in ERP-
segments. Our method is based on line-of-synchrony
detection in cross-recurrence plots and a pairwise
combination based on the estimated warping func-
tion. The robustness of the algorithm is improved
by introducing a regularization scheme into the esti-
mation of the distortion function and appropriate
settings for the regularization parameters can effi-
ciently be found by cross-validation. Pairwise aver-
aging based on signal-shape similarity was used in
order to avoid numerical problems with too irregular
warping paths and local minima of the regularization
procedure. Furthermore, an additional improvement
is possible by the use of context information that is
often available in complex experimental paradigms.
Recent experiments have introduced additional time
markers by design in order to increase the explana-
tory power of the data. In this way more specific
information on the underlying cognitive processes
can be obtained provided the data analysis allows
for this information to be extracted. We have demon-
strated that our method can be successfully applied
to artificial and real ERP data and that it can
provide the user with improved averages. Further
details, source code and updates of the presented
algorithms are publicly available.12
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