
Randomization of stimulus presentation is of particular impor-
tance in such priming experiments because it is known that the 
emergence of priming effects depends on the mix of priming condi-
tions in the realized trial-sequence. The NP effect, for example, is 
influenced by the proportion of attended and ignored repetition 
trials, respectively (Frings and Wentura, 2008). NP also depends 
on many subtle sequence-related factors such as number of stimuli 
(Kramer and Strayer, 2001) and stimulus-repetitions (for a review 
see Fox, 1995). It is therefore essential for the validity of the study 
to (1) present an exact proportion of stimuli/conditions as specified 
by the experimenter and (2) to randomize everything else properly.

Negative priming experiments are sometimes conducted using a 
“blocked” trial-presentation scheme that presents prime and probe 
as a single trial (usually, prime-probe episodes are distinguished by 
a longer interval between the trials than between prime and probe, 
e.g., Milliken et al., 1998; Grison and Strayer, 2001; Rothermund 
et al., 2005; Frings and Wentura, 2006). This approach has the 
advantage that experimental conditions are easily randomized 
because the prime-probe pairs are independent of one another. 
However, there are also problems with this approach: First, possible 
influences of the display that precedes prime-onset (the probe of 
the preceding trial) are disregarded and explicitly removed from 
the analysis. Since these probe-prime transitions are not controlled, 
overrepresentations of some probe-prime combinations may occur. 
Since it is known that the proportions of repeated stimuli may 
influence the overall pattern of results (e.g., Frings and Wentura, 
2008), this can be problematic for the interpretation of the results 
unless probe-prime transitions are explicitly analyzed and reported. 
There is also evidence for long-term priming effects (e.g., Lowe, 
1998; Grison et al., 2005) as well as for the emergence of second-
order priming effects (e.g., mediated priming; Livesay and Burgess, 

1 IntroductIon
In almost all psychological research that applies an experimental 
strategy, randomization of stimuli, participants and/or experimental 
conditions is essential for the validity of the obtained results. Many 
paradigms are simple enough that an on-line randomization can be 
applied, i.e., the experimental software can determine the stimuli 
to be shown by itself (e.g., by randomly choosing a stimulus from 
a given set). Some experimental setups, however, feature complex 
inter-trial dependencies such that proper randomization is more dif-
ficult. Consider for example negative priming (NP) experiments (e.g., 
Tipper, 1985). In these paradigms, the experimental condition of a 
trial depends not only on the stimuli presented in the trial (probe) but 
also on the preceding trial (prime). This dependency between trial 
i and trial i − 1 makes proper randomization difficult (because the 
condition in trial i + 1, in turn, depends on the stimuli in trial i). This 
paper presents a software that was designed to generate randomized 
stimulus-sequences for (negative-) priming experiments based on a 
heuristic optimization method known as genetic algorithms (GAs).

For illustration, we present a standard NP study (Schrobsdorff 
et al., 2007) which we will use as a reference throughout the manu-
script to clarify the exposition of our methodology. In their study, 
Schrobsdorff et al. (2007) presented pictograms of everyday objects 
(ball, book, bench, boat, bed) in two different colors and required 
their subjects to voice the label of the green stimulus while ignor-
ing the red stimulus (see Figure 2). Repetition priming and NP 
are realized by repeating one or both (partial vs. full repetition) 
of the objects from prime to probe either in the same (positive 
priming) or reversed colors (NP). The basic result is that reaction 
times and error rates are reduced for identical repetitions while 
they are increased for distractor-to-target repetitions (in relation 
to a control condition where no stimuli are repeated).
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1998) which further question the practical applicability of blocked 
trial-presentation. Last but not least, the experimental efficiency is 
reduced by half of what could be achieved by continuous presen-
tation. As a consequence, the time required for the experimental 
session increases, potentially causing mental fatigue which is associ-
ated with loss of cognitive control (Lorist et al., 2005) which in turn 
appears to be a prerequisite for NP to occur (de Fockert et al., 2010).

Continuous presentation schemes in which trial i is the probe 
for trial i − 1 and the prime for trial i + 1 (e.g., Kramer and Strayer, 
2001; Titz et al., 2008; Behrendt et al., 2010) circumvent these prob-
lems but also make randomization much harder. This is due to the 
fact that the trials are not independent anymore: Changing the 
stimuli in display i changes the experimental condition of trial i and 
trial i + 1. This dependency makes a randomized presentation of 
stimuli over the complete sequence very difficult when factors such 
as the number of presented trials for each priming condition are 
to be balanced across the experiment. A pseudo-randomized trial-
presentation is often used where the stimuli are selected based on 
a list that fulfills the desired properties. Generating such lists is not 
trivial because of the cross-trial dependencies. In addition, regard-
ing trial-sequence generation as an optimization problem, there 
may not exist a perfect solution such that the “optimal” sequence 
will necessarily violate some of the experimental constraints.

Furthermore, care must be taken that the sequences do not 
induce the use of strategies by the participants. For example, in 
NP tasks, subjects could use the prime distractor to predict the 
probe target (May et al., 1995) if they were aware of the experimen-
tal manipulation. The presentation of “random” (in the sense of 
unpredictable) trial sequences is therefore necessary. The literature 
on implicit sequence learning suggests that participants are able to 
exploit regularity in trial sequences for responding (Stadler, 1992; 
Stadler and Neely, 1997; Boyer et al., 2005) even if this regularity is 
quite subtle as, e.g., when the sequence is generated by an abstract 
grammar (Visser et al., 2009). To ensure “unpredictability,” many 
experimentalists control the presented trial-sequence in a way that 
some structural criteria are fulfilled. For example, it is desirable 
that the trials do not come in predictable patterns (e.g., multiple 
consecutive instances of the same experimental condition) and that 
stimuli appear an equal number of times. This is a tricky aspect, 
though: In an information-theoretic sense, any additional con-
straint (e.g., avoiding consecutive trials of the same experimental 
condition) on stimulus-sequences will reduce the entropy (the 
theoretical unpredictability) of the process that generated them 
(for an introduction to information theory, see Cover and Thomas, 
2006). However, humans are more affected by local regularities and 
it is therefore desirable to avoid local structure in the sequences 
(see literature on implicit sequence learning, e.g., Stadler, 1992). 
The criteria applied in the design of the trial sequences are only 
loosely defined because it is unclear what regularities have to be 
avoided in order to ensure unpredictability. This poses a difficulty 
to computer-aided trial-sequence generation as all constraints must 
be formally specified. In addition, any automated optimization 
technique must allow for deviations from the optimum and be 
flexible enough to adapt to different experimental needs.

In this paper, we present a computer program that makes use of 
a global optimization heuristic known as genetic algorithms (GAs) 
(Goldberg, 1989) to generate and optimize stimulus-sequences for 
priming experiments. As the name suggests, GAs are inspired by natu-

ral evolution and the parameters have therefore a natural equivalent 
in evolutionary biology. This fact allows for an intuitive understand-
ing of how parameter changes will affect the results which is very 
useful when working with the optimization algorithm. Our program 
allows to generate trial sequences for a variety of priming tasks. All 
priming paradigms that include two dimensions on which stimuli 
are distinguishable are supported. This includes in particular naming 
and categorization tasks in semantic or identity priming paradigms 
but also other tasks, such as priming in visual search (Kristjánsson 
and Driver, 2008).

In the following, we will shortly outline the theory of GAs. 
Furthermore, we will present the program and explain how it can be 
used to generate trial sequences for specific experiments. Finally, we 
present examples of results acquired using the program, compare it to 
an on-line randomization approach and discuss potential extensions.

2 MaterIals and Methods
2.1 GenetIc alGorIthMs
Genetic algorithms are search heuristics that can be used to approxi-
mate a globally optimal solution to a problem. GAs have been suc-
cessfully applied to many real-life problems in fields as different as 
economics, biology, and computer science (Goldberg, 1989). The 
approach is inspired by biological evolution: It mimics concepts 
like inheritance, mutation, natural selection, and recombination 
(Beasley et al., 1993a,b). Basically, the algorithm generates random 
solutions to the problem and improves them by means of evolution-
ary strategies. The operation of the algorithm therefore requires a 
way to generate solutions from the space of all possible solutions 
S to the optimization problem and a fitness function F:S → [0,1] 
that assigns a real number (fitness value) to each member of S.

The performance of the GA depends more on the choice of an 
efficient encoding scheme and the fitness function than on the set-
tings of other more peripheral parameters. Therefore, a first problem 
is to find a suitable representation of valid solutions. In allusion to 
the biological equivalent, such a representation is called a genome, 
g ∈ S. The classical version of the GA requires a binary coding of the 
input (Goldberg, 1989): For example, if any solution can be coded as 
a sequence of arbitrary integer numbers, these can be represented as 
binary strings following the standard decimal to binary conversion. 
However, it is often beneficial to use a representation that is specifically 
tailored to the search-space and does not allow “invalid” solutions 
to be coded. We therefore implement a genome designed to encode 
exactly the valid stimulus-sequences but not more (see Section 2.2.2).

The second and most important step to apply a GA to an opti-
mization problem is to design the fitness or objective function F. 
This function takes an instance of the set of all possible solutions 
and evaluates it in terms of how well it solves the problem, i.e., it 
assigns a score, the “fitness,” to it. The design of this function is 
crucial for the performance of the algorithm as it is the only means 
for the algorithm to determine the efficiency of a generated solu-
tion, thereby governing the result of the optimization completely.

There are several variants of GAs but the general behavior is 
as follows: A random initial population P

0
 = {g

1
,…,g

N
} of N pos-

sible solutions is generated and a fitness value is calculated for 
each genome. Then, a reproductive cycle is started in which two 
instances from P

0
 are sampled according to their fitness which are 

used to generate two offspring (i.e., members of the next population 
P

1
) by recombination. With probability p

mut
, each genome from 
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indexed by integer numbers ranging from 1 to n
stim

. Experimental 
conditions are defined by which stimuli repeat from one trial to the 
next. All possible repetitions of one or both stimuli are supported 
as shown in Table 1.

In our reference study (Schrobsdorff et al., 2007), the set of 
stimuli comprises the n

stim
 = 5 objects ball, book, bench, boat, and 

bed. Each of these stimuli can be the target (when it is presented 
in green) or the distractor (red). The study implemented priming 
conditions with both partial (DT, TT) and full repetitions (DTTD, 
DDTT), see Figure 2. The software was designed with such identity 
NP experiments in mind but is also applicable to other priming par-
adigms. In fact, all priming paradigms that include two dimensions 
on which stimuli are distinguishable are supported. This includes in 
particular naming and categorization tasks in semantic or identity 
priming paradigms but also other tasks, such as priming in visual 
search (Kristjánsson and Driver, 2008).

It is also possible to use the software for generating trial 
sequences for semantic or affective priming tasks, even though 
a bit of additional work is required. Consider for example the 
study by Damian (2000) in which priming between same-cat-
egory stimuli (vehicles, tools, animals, furniture, and clothing) 
was investigated. Priming was investigated by considering, e.g., 
whether subsequent presentation of two different tools or vehi-
cles primed each other. In this case the categories, not the actual 
instances, would correspond to stimuli in our software. The 
mapping from category to specific object would have to occur 
after the sequence has been generated and is out of the scope of 
the software. However, this is relatively straight-forward using 
a spreadsheet software to replace category-labels with instances 
(though care must be taken to randomize the number of occur-
rences of each stimulus as well). We will discuss potential exten-
sions of our software in the general discussion.

2.2.2 Coding and genetic operators
Currently only sequences for two distinct types of stimuli (“targets” 
and “distractors”) can be realized. A trial-sequence “genome” g = (t,d), 
thus consists of two sequences (t

i
,d

i
) ∈ {1,…,n

stim
} × {1,…,n

stim
} with 

i ∈ {1,…,n
trials

} each of which codes for one of the n
stim

 possible stim-
uli1. Thus, the genome g is a sequence of numbers indicating which 
stimulus is presented as target and distractor in each trial and S is 

a population undergoes a mutation (i.e., one bit of the genome 
is flipped, see Figure 1B). There are several possible schemes for 
recombination (Beasley et al., 1993a), the most classical being cross-
over where parent genomes are split at a random location and 
recombined with probability p

cross
 (see Figure 1A). The natural 

selection is represented by the fitness-biased selection of genomes 
for recombination from the parent population. This step is repeated 
until the children-population is again of size N. The parent popula-
tion is then dropped and the whole procedure iterated with the new 
population as parent population, thereby generating a sequence of 
populations P P P0 1→ → → n .  The iterations end when either a 
maximum number of generations has been reached or the mean 
fitness of the population saturates (i.e., the algorithm converges).

Maybe an image is helpful to illustrate these rather technical expla-
nations: Picture a population of rabbits living on a desolate island. The 
island holds enough resources to support only N individual rabbits 
(this is the population size parameter). There are some dangers on 
the island (high waves, predator animals) such that evolutionary pres-
sure (the fitness function) encourages the mating and reproduction 
of fitter individuals (the reproductive cycle). During reproduction, 
the rabbit’s genomes are recombined (cross-over) and are subject to 
random mutations such that child rabbits may differ considerably 
from their parents. Because the island can hold only N rabbits, for 
each child rabbit, one of the adult ones must perish. No child can 
perish before all adults are gone and after all adult rabbits have died, 
the new population begins reproducing. This corresponds to one 
iteration of the GA and continues until a specified number of genera-
tions have lived on the island. With such a picture in mind, it is easy 
to attach meaning to the parameters of the optimization algorithm 
and to predict how a parameter change might influence the results.

2.2 applIcatIon to trIal-sequence GeneratIon
In order to apply GAs to the problem of trial-sequence generation, 
a coding scheme must be devised allowing to encode trial sequences 
in a way that the genetic operators cross-over and mutation can 
be applied such that they yield valid solutions. Furthermore, a fit-
ness function needs to be specified that encodes the experimen-
tal requirements and that makes the sometimes implicitly given 
requirements and assumptions explicit.

2.2.1 Scope of the approach
We formalize the experimental setup as follows: There are two dif-
ferent “types” of stimuli (i.e., target and distractor) and a number 
of stimulus “identities” (e.g., specific words or pictures) which are 

Figure 1 | Cross-over and mutation. (A) Two individual genomes are chosen from the parent population Pi and recombined using the cross-over technique to 
yield two members of the children-population Pi + 1. The splitting point is chosen randomly. (B) When going from population Pi to Pi + 1, each bit is flipped with 
probability pmut, mimicking the effect of mutation in natural evolution.

1Note that t
i
 and d

i
 refer to the ith element of the vectors t and d while t

i
 and d

i
 refer 

to the vectors of target and distractor in the ith genome.
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(ii) priming conditions appear a desired number of times [e.g., 
each condition was to appear 80 times in Schrobsdorff et al. 
(2007) study],

(iii) only three consecutive trials of the same condition are 
allowed,

(iv) all objects appear as target an equal number of times (e.g., 
there have to be as many target “benches” as target “books”),

(v) all objects appear as distractor an equal number of times 
(e.g., there have to be as many distractor “benches” as distrac-
tor “books”).

The choice of these criteria reflects an attempt to find the mini-
mal number of criteria such that the software produces sequences 
that do not show any obvious structure. Additional criteria (e.g., 
the distribution of objects per priming condition) are usually ful-
filled when a large number of trials is generated. The implementa-
tion of more or alternative criteria is straight-forward, but requires 
programming skills because the source-code of the application 
needs to be adapted.

Only desired priming conditions. This criterion is implemented 
as the number of trials of desired experimental conditions divided 
by the number of all trials,

C
n

n1( ) .g = desired

trials  (2)

Desired distribution of priming conditions. The user can specify a 
desired distribution r

i
 giving the relative number of times each of 

the priming conditions i ∈ Θ: = {control, DT, TT, TD, DD, DDTT, 
DTTD} should occur in the generated sequence. To calculate this 
criterion, we have to compare the empirical distribution e

i
 = n

i
/n

trials
 

(where n
i
 is the number of trials of priming condition i, i.e., e

i
 is the 

relative frequency of trials of priming condition i) against the desired 
distribution r

i
. The L

1
 distance

d e rL i i
i

1
( )r e, = −

∈
∑

Θ

is a suitable measure, since the maximum of dL1
 is 2 (if Σ

i
e

i
 = 1 and 

Σ
i
r

i
 = 1) and the criteria can therefore be calculated to lie within 

the range [0,1] such that a weighted sum of the criteria can be 
interpreted. The criterion can then be expressed as

C dL2 1
1

2 1
( ) ( , ).g r e= −

 
(3)

the set of all possible trial sequences. In our reference study, a typical 
genome looks like that in Table 2. We define the genetic operators 
cross-over C : S × S → S (defining sexual reproduction by combin-
ing two genomes) and mutation M : S → S (defining a mutational 
change of the genome) such that they must produce valid solutions. 
The cross-over operator randomly determines a trial at which to split 
the genome and concatenates the parent genomes such that the child 
is identical to the “father” up to the split point and identical to the 
“mother” thereafter. The mutation operator simply replaces each 
stimulus (either in t or in d) independently with a random element 
from {1,…,n

stim
} with probability p

mut
 (i.e., the probability that there 

is at least one mutation in a genome is 2n
trials

p
mut

 and is typically very 
small).

2.2.3 Fitness function
We chose a fitness function F:S → [0,1] for trial-sequence gen-
eration that evaluates a solution in terms of a weighted sum of 
a number of n

crit
 separate criteria C

i
:S → [0,1] that are rescaled 

according to a power-law with exponent k

F( ) ( ) .g g= ∑ωi i
k

n

C
i =1

crit

 
(1)

The weights ω
i
 ∈ [0,1] are restricted to sum to 1 and can be 

adjusted by the user to emphasize the importance of some of 
the criteria. The scaling exponent k can be chosen to give more 
emphasis to low scores when the overall convergence behavior is 
not satisfactory (i.e., the algorithm converges at low fitness values, 
e.g., 0.8).

The following n
crit

 = 5 criteria were implemented in our software:

(i) only desired priming conditions are realized (e.g., in the refe-
rence study, only control, DT, TD, DTTD, and DDTT trials 
are presented),

Figure 2 | Stimuli and conditions used in a reference negative priming 
study (Schrobsdorff et al., 2007, see Table 1 for the abbreviations).

Table 2 | Typical genome for the reference study (Schrobsdorff et al., 2007).

Trial 1 2 3 … ntrials

Target Bed Bench Boat … Boat

Distractor Bench Book Bed … Bed

Mutation randomly changes one of the labels (e.g., “bed” in trial 1 to “bench”) 
and cross-over concatenates two partial tables split at a randomly chosen trial.
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Table 1 | Stimulus-repetition conditions supported by our framework.

Condition Prime Probe

 Target Distractor Target Distractor

DT (negative priming) A B B C

TT (positive priming) A B A C

TD (target-to-distractor) A B C A

DD (distractor repetition) A B C B

DTTD (reversed repetition) A B B A

DDTT (full repetition) A B A B

Control A B C D

Invalid All other conditions
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2.3.1 Tutorial – suggested workflow
Getting the best result out of the optimization can be tricky when 
the conditions posed by the experimenter are hard to fulfill. That 
means, depending on the actual requirements, the optimization 
problem might be very difficult or the optimal solution might not 
be good enough because there is no trial-sequence that can come 
close to satisfying the constraints. Our experience in working with 
the program resulted in a typical workflow: First, the number of 
stimuli and the choice of experimental conditions are set along 
with the length of the trial sequence and the desired distribution 
of the stimulus-repetition conditions. Then, a first run with the 
default parameters is executed to check the general level of the solu-
tion’s fitness. If the results are unsatisfactory because the sequences 
do not fulfill the constraints, the GA settings should be manipu-
lated first (i.e., larger population size, more populations) and the 
resulting increase in performance be evaluated. If the algorithm is 
observed to converge (when the curve approaches an asymptote) 
and the performance is still suboptimal, it is necessary to increase 
the number of trials and/or the number of objects in the sequence 
since a good solution does not seem to exist. Finally, once a good 
sequence has been generated, it can be manually tweaked to further 
increase the fitness. In the following, we give a detailed account 
of this procedure.

(i) Setting experimental constraints
The first step is obviously to specify the requirements of the 
planned experiment. The parameters are collected in the 
“Setup”-tab of the program: Number of stimuli in the expe-
riment, number of trials and the stimulus-repetition con-
ditions along with the desired frequency of the conditions. 
Depending on the choice of these parameters, the difficulty 
of the optimization problem is going to vary: It is for example 
comparatively easy to realize an overrepresentation of control 
trials because they leave the algorithm the freedom to choose 
four different stimuli without constraints. In contrast, if many 
full repetition (DDTT) or reversed repetition (DTTD) trials 
are desired the constraints may be severe and, in fact, not pos-
sible to fulfill completely.

(ii) Running the optimization
It is suggested that an initial run using the default parame-
ter settings is performed. The default parameters have been 
carefully selected to be successful for a number of require-
ments. The main parameter is the “number of generations”: 
It directly determines how many iterations are run and should 
be the first to be increased. In the next steps the results of the 
algorithm need to be validated and adjusted to yield optimal 
results.

(iii) Checking algorithm convergence
The “Convergence”-tab presents a plot of the popula-
tion scores as a function of population index similar to 
Figure 4. The user should verify that the score has set-
tled at a high level and does not continue to grow. If the 
scores have not yet converged, the number of generations 
should be increased and the algorithm rerun. The default 
number of generations was set to an intermediate value 
(5000 generations) in order to provide a fast initial result. 
The program’s runtime will increase proportionally to the 

Only three consecutive trials of same condition. All trials that lie 
in a consecutive sequence of more than three trials of the same 
condition are counted as nconsecutive

. The criterion evaluates to

C
n

n3 1( ) .g = − consecutive

trials  (4)

Uniform distribution of stimuli over target/distractor. These cri-
teria are evaluated similar to the second one by calculating the L

1
 

distance between a uniform distribution and the empirical distri-
bution. The empirical distribution is the relative frequency each 
stimulus appears as target/distractor, thus

C
j d i

n n

j

i

n

4
1

1
1

2

1
( )

# |
g = −

={ }
−

=
∑

trials stim

stim

 

(5)

and

C
j t i

n n

j

i

n

5
1

1
1

2

1
( )

# |
g = −

={ }
−

=
∑

trials stim

stim

 

(6)

where #S is the number of elements (cardinality) of set S.
After the separate criteria C

1
 to C

5
 are calculated, they are com-

bined into an overall fitness-score F according to Eq. 1.

2.3 software IMpleMentatIon
The program is available as source-code and pre-compiled bina-
ries for a variety of platforms (Microsoft Windows, Mac OS X, 
Linux 32/64 bit) from the project webpage (Ihrke, 2011) and is 
released under the GNU General Public License2 (Free Software 
Foundation, 1991). The software comes with a graphical user 
interface (see Figure 3) allowing to vary all important parameters. 
Documentation and installation instructions are available from the 
project webpage and from within the application (“Help”-tab).

There are two separate tabs that are designated to set the experi-
mental constraints and the optimization parameters for the GA, 
respectively. After providing the experimental constraints, the user 
can hit the “Go” button and the GA will begin the optimization. 
After the GA has converged, the best sequence found during the 
optimization is presented in the “Result”-tab along with descriptive 
statistics. This sequence can be saved as a comma-separated list and, 
e.g., imported into a spreadsheet program (import via comma-
separated values, CSV) or read by the experimental software. On 
the project’s webpage (Ihrke, 2011), we provide example code for 
several commonly used presentation environments that read our 
file-format, thus making the generated sequence accessible to the 
presentation routine. Furthermore, a plot of the algorithm’s conver-
gence is provided, showing the fitness-score of the worst, average, 
and best individual over successive populations. This allows the user 
to directly assess how well the algorithm converged and to judge 
the quality of the final sequence. Also, the generated sequence can 
be modified in place and re-evaluated. Finally, a configuration can 
be saved to file and re-loaded into the application.

2The software depends on the freely available library for genetic algorithms GAlib 
by Wall (1999).
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(v) In case of good convergence but poor results: Increase degrees 
of freedom
Occasionally, if experimental parameters are unfortunately 
selected, the GA may converge at a suboptimal level. In this 
case, increasing the number of iterations will not solve the 
problem as the algorithm is stuck in a local maximum. There 
are a couple of parameters that can be tweaked to provide 
the algorithm with more flexibility. However, the described 
steps may also result in a much larger number of necessary 
iterations and can even prevent the GA from converging at 
all.
Different steps should be taken, depending on the distribution 

of the criterion scores:

•	 One	score	low,	all	others	high
Sometimes, a good global score can be achieved by choosing 
a “loser” criterion score that will take on low values while all 
others can achieve better ones. For example, if a large number 
of full repetitions (DDTT) are desired, the algorithm could 

number of generations. If the initial run was fast enough, 
the number of generations can safely be doubled or tri-
pled (resulting in a run twice or three times as long) to see 
whether additional value can be gained by longer conver-
gence. Note, that the number of iterations required to solve 
the problem is dependant on the number of trials in the 
genome: The longer the trial-sequence, the more iterations 
have to be run to find a good solution (since the search-
space is much larger).

(iv) Check best genome
The “Result”-tab provides an editable table showing the best 
sequence encountered during optimization along with a 
graphical summary of the properties of the sequence: There 
are histograms showing the distribution of the stimuli as tar-
get and as distractor and a histogram for the distribution of 
experimental conditions. The desired distribution is depicted 
in dark gray for easy orientation (Figure 3). Finally, the partial 
scores defined in Section 2.2.3 are listed, giving an indication 
of the quality of the sequence.

Figure 3 | Screenshot of the “result”-tab. Statistics are located next to a table containing the generated trial-sequence, making it easy to modify and evaluate the 
sequence.
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3 results
The performance of the GA depends on the mix of experimental 
conditions chosen by the user and on the number of stimuli and tri-
als (as well as the algorithm’s parameters). Typically, when the maxi-
mal fitness is unsatisfactory (i.e., the criteria are not fully satisfied), 
an increase of the number of stimuli or trials will provide enough 
degrees of freedom for the algorithm to find a more satisfactory 
solution. For standard settings realized in many studies, the overall 
score of the best sequence is between 90 and 100% (see Section 3.1).

An important aspect when using an optimization strategy 
such as GAs is the computational complexity and hence the time 
required to solve the optimization problem. The runtime of the 
software depends critically on the number of iterations, the popu-
lation size, and the number of trials that are to be generated (length 
of the genome)3. It is also possible that unfeasible parameter set-
tings will yield impractical running times. In our applications, the 
software generally finished calculation in a reasonable amount of 
time on standard desktop-computers and laptops (10 s up to sev-
eral minutes for large number of iterations). If impractical running 
times are encountered, the user is encouraged to use the program’s 
plot-panel to evaluate how well the algorithm converges for a low 
number of generations and increase that number slowly until a 
good trade-off between runtime and quality of the result is found.

3.1 exaMples
The examples presented here are available as settings-files that can be 
loaded directly into the software to reproduce the discussed results.

3.1.1 Example 1: standard setup
As a first example, we generate a trial sequence for a prim-
ing experiment implementing only negative (DT) and positive 
priming (TT) conditions in addition to control conditions. In 
order to control for a bias caused by an overrepresentation of 
trials including any repeating stimulus, we generate 50% control 
and 25% of each of the priming conditions. We use 10 differ-
ent stimuli and realize 400 trials. Without changing any of the 

choose to disregard the “only three consecutive same-condi-
tion-trials” criterion and produce a large number of conse-
cutive full repetitions. As a remedy, a larger value of k (the 
power-law-scaling exponent) can be used. This will increase 
the penalty given to low values of the partial scores. Increasing 
the weight for the loser-criterion might help as well but can 
also lead to a different loser being chosen by the algorithm.

•	 All	scores	low
When the algorithm converges at a low level for all partial 
scores, several remedies can be tried: At first the simple GA 
should be examined (instead of the default steady-state GA). 
This algorithm is more flexible and convergence will be slo-
wer. If the convergence is still good but at a low value, the “eli-
tism” checkbox can be unchecked increasing variability even 
more. Additionally, larger populations or larger probabilities 
of mutation and cross-over can help in this situation (also in 
combination with a steady-state algorithm). The algorithm 
should be rerun several times to check whether the conver-
gence is reproducible.

(vi) Manual tuning
Finally, the software provides facilities to change and re-eva-
luate the sequence according to the discussed criteria. The first 
few best sequences encountered during the run are put into 
the table in the “Result”-tab (they can be cycled through using 
the arrow-buttons). It is possible to manipulate items in the 
sequence and generate a new score on-the-fly which is very 
convenient for manipulating a close-to-optimal sequence. 
Such fine-tuning may be desired, when the algorithm inclu-
ded unwanted experimental conditions (which may happen 
because of the trade-off over the criteria in Eq. 1).

Note that it might in general be more practical to generate 
shorter segments of trial sequences (e.g., one for each experimental 
block). This is because (i) their generation is easier to control and 
(ii) they can be combined in randomized order in the experiment 
without taking care of the trials on the boundary between two 
blocks. In addition, the final full sequence will satisfy the constraints 
also locally. However, it may be more difficult to fulfill the distribu-
tion constraints for short sequences.

Figure 4 | Statistics for the best stimulus-sequence generated with the standard setup. Plotted are the fitness and divergence (average distance between 
individuals in the population) values as a function of generation (upper and lower left; log-scale) and histograms for target/distractor stimuli (upper right) and stimulus 
condition (lower right).

3The runtime depends linearly on the three parameters: Doubling the number of ge-
nerations/trials or the population size will approximately double the runtime as well.
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and  generated  distribution of priming conditions are easily rem-
edied by hand (in this case, by converting two DD and one TD 
trials into DDTT trials).

3.1.3 Example 3: Ihrke et al. (2011)
In a recent study, we conducted an NP experiment in which we 
implemented four different priming conditions, DT, TT, TD, and 
DD (Ihrke et al., 2011) that were to occur an equal number of times. 
There were 840 trials and 5 different stimuli. The results after 10000 
iterations are optimal (F = 1, Figure 6).

3.2 coMparIson wIth on-lIne randoMIzatIon
While it is more difficult to perform an on-line randomization for 
priming experiments than it is for paradigms without prime-probe 
relations, it is still possible when explicitly accounting for the inter-
trial dependencies. To formulate a subroutine that can return the 
next stimuli given the preceding ones, it is convenient to use the 
terminology of Markov-chains. In these stochastic processes, the 
probability to be in a state at a given point in time depends only on 
the previous state. When associating the states with the presented 
stimuli, it is possible to create an algorithm for generating the next 
display which will converge to an optimal distribution of conditions 
and target/distractor stimuli in the limit of large number of trials. 
The details of this Markov-chain are described in the Appendix.

parameters except the number of generations (the “runtime”), 
the algorithm returns almost perfect results (all scores close to 
1, see Figure 4): The stimulus objects are uniformly distributed 
over target/distractor and the conditions appear in appropriate 
relations.

3.1.2 Example 2: Schrobsdorff et al. (2007)
The reference study presented above and illustrated in Figure 2 
(Schrobsdorff et al., 2007) implemented both partial and full repeti-
tions (DT, TT, DDTT, and DTTD) besides the control condition. 
Each condition was presented 80 times such that there was a total 
number of 400 trials (excluding a practicing phase). Five different 
stimuli were used.

The requirements for this study are rather hard to fulfill, 
because the full repetitions (DTTD and DDTT) pose restric-
tions on the stimulus-sequence. A run with the default param-
eters running for 10000 generations did not succeed in producing 
the desired distribution of priming conditions (control condi-
tions were overrepresented and DDTT conditions were under-
represented). By giving more weight to criterion (ii) however 
(ω

2
 = 0.32, ω

1
 = ω

3
 = ω

4
 = ω

5
 = 0.17), the algorithm was suc-

cessfully guided toward the near-optimal solution shown in 
Figure 5. Target and distractor stimuli are perfectly uniformly 
distributed and the few remaining discrepancies between required 

Figure 5 | Statistics for the best stimulus-sequence generated with the setup for Schrobsdorff et al. (2007) study. Plotted are the fitness and divergence 
values as a function of generation (upper and lower left; log-scale) and histograms for target/distractor stimuli (upper right) and stimulus condition (lower right).

Figure 6 | Statistics for the best stimulus-sequence generated with the setup for ihrke et al. (2011) study. Plotted are the fitness and divergence values as a 
function of generation (upper and lower left; log-scale) and histograms for target/distractor stimuli (upper right) and stimulus condition (lower right).
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similarity to biological evolution which lets the meaning of the 
parameters become transparent. A tool for manual tweaking of the 
generated sequences is provided as well. The software is suitable 
for priming tasks that vary from trial to trial on two independent 
dimensions. The program is hosted as an open-source project 
and is expected to evolve with the needs of experimentalists into 
a more general tool for trial-sequence generation. The software 
was designed to be extensible such that new requirements can be 
integrated in future versions with minimal programming effort.

4.1 future dIrectIons
We seek to extend the functionality of our program in several ways. 
Currently, if any experimental variation in addition to the priming 
conditions is desired, it must be added “by hand” to the generated trial-
sequence using, e.g., a spreadsheet software. For example, recent studies 
have focused on response-repetitions in addition to the stimulus-rep-
etitions covered by our software (e.g., Rothermund et al., 2005; Mayr 
et al., 2011). Randomization of the response-sequence in addition to 
the trial-sequence therefore includes additional inter-trial dependencies 
which must be uniformly distributed as well. We opt for the inclusion 
of such additional restrictions in future versions of our software.

Another important step is to increase the number of paradigms 
to which the program can be applied. Consider, for example, n-back 
tasks (e.g., Schmiedek, 2009): to support this task it is necessary to 
model inter-trial dependencies between trial i and trial i − n instead 
of only prime-probe dependencies. Our goal is to gradually approach 
a generality that will allow to model any such experimental require-
ments. This requires, however, a much more flexible formalism 
allowing the individual researcher to adapt the program to his needs. 
Currently, to adapt the software to different paradigms, program-
ming skills are required: The fitness function as well as the stimulus-
dependencies must be explicitly specified in the source-code. Later 
versions of our software are to include the possibility to specify any 
inter-trial dependencies on a variable number of dimensions.

Finally, we want to implement a measure for the random-
ness of a trial-sequence in order to avoid predictability in the 
recorded sequences. Potential candidates for such a meas-
ure are the Approximate Entropy (Pincus, 1991; Pincus and 
Kalman, 1997) or a derivate (e.g., Sample Entropy, Richman 
and Moorman, 2000) or the calculation of an entropy-measure 
for a minimal finite-state automaton fitted to the trial sequence 
(Cleeremans et al., 1989). However, there are several problems 
defining “predictability” by human subjects: First and foremost 
it is unclear what kind of sequential structure can be learned 
and used by human subjects. Studies on implicit sequence learn-
ing show that rather complex and stochastic structure can be 
exploited. Furthermore, due to the multivariate character of 
most trial sequences, it is not obvious whether only the sequen-
tial structure of each dimension or also cross-dependencies can 
be predicted. These considerations must be taken into account 
when designing a “measure of predictability” for trial sequences.
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In Table 3, we present a comparison of stimulus-sequences gen-
erated using the GA and the on-line randomization for the three 
examples from the preceding section. The GA performs better in all 
cases. Because of the stochasticity of the on-line randomization, it 
can be expected that the overall quality of the method converges to 
optimal values with growing number of trials. In Figure 7, we present 
the score of the generated sequences using both the GA and the on-line 
randomization as a function of length (number of trials). While the 
GA finds an optimal solution independent of the number of trials in 
the sequence, the on-line solution approaches good results only for a 
large number of trials. The remaining gap between the two curves is a 
result of criterion C

3
 in the calculation of the fitness-scores: Because 

the number of consecutive trials of the same experimental condition 
is punished in the GA but not in the on-line algorithm, the fitness 
of the on-line solution will always be lower than the GA-solution.

4 dIscussIon
Priming paradigms are widely applied in behavioral research and 
properly randomized trial sequences are an important basis for any 
successful priming experiment. Because the cross-trial dependency 
makes the use of on-line randomization more difficult and can even 
pose problems in manually designing randomized trial sequences, 
we developed a software that automatically generates suitable trial 
sequences based on a GA optimization strategy. GAs are argued 
to be particularly intuitive for behavioral researchers due to their 

Table 3 | Comparison of the genetic algorithm and the on-line approach 

for the presented examples (k = 6).

 example 1 example 2 example 3

 GA On-line GA On-line GA On-line

C1 0.87 0.99 0.94 0.99 0.99 0.99

C2 0.87 0.77 0.94 0.80 0.99 0.94

C3 1.00 0.74 1.00 0.99 1.00 1.00

C4 0.99 0.64 1.00 0.68 1.00 0.92

C5 0.96 0.72 1.00 0.83 1.00 0.80

F 0.94 0.77 0.98 0.86 1.00 0.93

C1 through C5 are the criteria introduced in Eq. 2 through 6, F is the overall 
fitness-score from Eq. 1.

Figure 7 | Performance of the genetic algorithm and the on-line strategy as 
a function of number of trials using the standard setup presented in Section 
3.1.1 (k = 6). While the GA produces optimal results also for lower number of 
trials, the fitness of the sequences from on-line randomization increases with the 
number of trials and saturates at a lower level than the GA-solution.
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A P X s X sij t j t i= = =( )−| 1

with s
i
 ∈ Ω are determined by the required distribution of prim-

ing conditions π
i
, i ∈ Θ with Σ

i
π

i
 = 1. As before, this distribution 

is specified by the experimenter. Depending on which priming 
condition is chosen, the stimuli in the next display are restricted: 
In full repetition or full reversal trials, the stimuli will be the same 
as in the current trial (so there is only one possible transition). 
For all conditions with a single repetition, the number of possible 
stimuli for the probe is n

stim
 − 2, because one stimuli is fixed (the 

repeated one) and the other one can be any stimulus except the 
current target or distractor. In order to achieve a uniform distribu-
tion over the stimuli, the probability for the priming conditions in 
the probe is equally divided among all possible stimuli that real-
ize this condition, such that A

ij
 = p

k
 = π

k
/N

k
 for all i,j that result 

in priming condition k ∈ Θ. The number of possible transitions 
N

k
 per priming condition k is given in Table A1. For example, if 

the relative frequency of DT conditions in the trial sequence is to 
be π

DT
 = 0.2, then A

ij
 = 0.2/(n

stim
 − 2) for all i,j that will result in 

a DT condition. This will ensure that stimuli will be uniformly 
distributed in the limit of large number of trials. The process is 
illustrated in Figure A1.

A script written in the R environment for statistical computa-
tion (R Development Core Team, 2010) that implements this idea 
is available from the website (Ihrke, 2011).

appendIx
on-lIne randoMIzatIon for prIMInG experIMents
Since in priming experiments the dependency is only between prime 
and probe, it is possible to use an on-line randomization approach 
based on Markov-chains (for an introduction to Markov-chains, see 
Papoulis and Pillai, 2002). A Markov-chain is a stochastic process 
X

t
 that is characterized by the Markov-property: The probability 

distribution for trial t depends only on the previous outcome,

P X s X s X s P X s X st t t t t t t t= = … =( ) = = =( )− − − −| , , | .1 1 0 0 1 1

Because the condition in trial i depends only on trial i − 1 for 
priming experiments, it is possible to formulate this requirement 
in terms of a Markov-chain.

Given n
stim

 different stimuli, we formulate the state-space of a 
Markov-chain that consists of each possible individual display, i.e., 
each possible combination of two different stimuli (each display 
consists of target and distractor)

Ω = … ( ) … ( ) …{( , ),( , ), , , ,( , ),( , ), , , , ,1 2 1 3 1 2 1 2 3 2n n

n

stim stim

stim ,,nstim −( )}1

(trials in which target and distractor are identical are excluded, 
because they are considered to be invalid). The initial state is chosen 
randomly and the transition probabilities

Table A1 | Number of possible probe displays given a prime display 

when a specific priming condition is desired.

Condition Number of transitions Ni

DT (negative priming) NDT = nstim − 2

TT (positive priming) NTT = nstim − 2

TD (target-to-distractor) NTD = nstim − 2

DD (distractor repetition) NDD = nstim − 2

DTTD (reversed repetition) NDTTD = 1

DDTT (full repetition) NDDTT = 1

Control Ncontrol = (nstim − 2)!/(nstim − 4)!

Invalid Ninvalid = 0

Figure A1 | illustration of a Markov-chain for nstim = 4 different stimuli. 
The chain is currently in state (1,2) shown in blue (target 1 and distractor 2) 
and moves to a new stimulus combination with the transition probabilities Aij 
as defined in the text.
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