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• Contrasts two frameworks for using neural data to identify latent cognitive states.
• Neural data have more power to recover discrete versus continuous latent states.
• Reliably identifying latent cognitive states depends on effect size in neural data.
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a b s t r a c t

Psychological theory is advanced through empirical tests of predictions derived from quantitative cog-
nitive models. As cognitive models are developed and extended, they tend to increase in complexity –
leading to more precise predictions – which places concomitant demands on the behavioral data used
to discriminate between candidate theories. To aid discrimination between cognitive models and, more
recently, to constrain parameter estimation, neural data have been used as an adjunct to behavioral data,
or as a central stream of information, in the evaluation of cognitive models. Such a model-based neuro-
science approach entails many advantages, including precise tests of hypotheses about brain–behavior
relationships. There have, however, been few systematic investigations of the capacity for neural data to
constrain the recovery of cognitive models. Through the lens of cognitive models of speeded decision-
making, we investigated the efficiency of neural data to aid identification of latent cognitive states in
models fit to behavioral data. We studied two theoretical frameworks that differed in their assumptions
about the composition of the latent generating state. The first assumed that observed performance was
generated from a mixture of discrete latent states. The second conceived of the latent state as dynami-
cally varying along a continuous dimension. We used a simulation-based approach to compare recovery
of latent data-generating states in neurally-informed versus neurally-uninformed cognitive models. We
found that neurally-informed cognitive models were more reliably recovered under a discrete state rep-
resentation than a continuous dimension representation for medium effect sizes, although recovery was
difficult for small sample sizes and moderate noise in neural data. Recovery improved for both represen-
tations when a larger effect size differentiated the latent states. We conclude that neural data aids the
identification of latent states in cognitive models, but different frameworks for quantitatively inform-
ing cognitive models with neural information have different model recovery efficiencies. We provide full
worked examples and freely-available code to implement the two theoretical frameworks.
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1. Introduction

Quantitative models that explicate the cognitive processes
driving observed behavior are becoming increasingly complex,
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leading to finer-grained predictions for data. Although increasingly
precise model predictions are undoubtedly a benefit for the field,
they also increase the demands placed on data to discriminate
between competing models. The predictions of cognitive models
have traditionally been tested against behavioral data, which is
typically limited to choices and/or response times. Such behavioral
data have been extremely useful in discriminating between model
architectures (e.g., Anderson et al., 2004; Brown & Heathcote,
2008; Forstmann, Ratcliff, & Wagenmakers, 2016; Nosofsky &
Palmeri, 1997; Ratcliff & Smith, 2004; Shiffrin & Steyvers, 1997;
Tversky & Kahneman, 1992). As model predictions increase in
precision, however, we approach a point where behavioral data
have limited resolution to further constrain and discriminate
between the processes assumed by the models of interest.

The problem of behavioral data providing limited constraint is
compounded when one aims to study non-stationarity. Cognitive
models typically assume a stationary generative process whereby
trials within an experimental condition are treated as independent
and identically distributed random samples from a probabilistic
model with a specified set of parameters. This assumption has
proven extremely useful, both practically and theoretically, but is
not supported by fine-grained empirical analysis (e.g., Craigmile,
Peruggia, & Van Zandt, 2010; Wagenmakers, Farrell, & Ratcliff,
2004). Recent work in the study of stimulus-independent thought,
or mind wandering, provides a psychological mechanism that
can explain these findings, at least in part, in terms of observed
performance arising from two or more latent data-generating
states. One prominent theory proposes that ongoing performance
is driven by two distinct phases: perceptual coupling – where
attentional processes are directed to incoming sensory input
and completing the ongoing task – and perceptual decoupling
– where attention is diverted from sensory information toward
inner thoughts (for detailed review, see Smallwood & Schooler,
2015). The perceptual decoupling hypothesis of mind wandering
proposes, therefore, that observed behavior is the end result of a
mixture of discrete latent data-generating states. To gain insight
into the processes underlying the phases of perceptual coupling
and decoupling, the goal of the cognitive modeler is to use the
available data to determine the optimal partition of trials into
latent states.

On the basis of behavioral data alone, such as choices and
response times, reliably identifying discrete latent states can be
difficult or near impossible. In an example of this approach,
Vandekerckhove, Tuerlinckx, and Lee (2008) aimed to identify
contaminant trials – data points not generated by the process
of interest – in a perceptual decision-making experiment. They
defined a latent mixture model in a Bayesian framework that
attempted to partition trials that were sampled from the (diffusion
model) process of interest from contaminant trials distributed
according to some other process. In attempting to segment trials
to latent classes, the diffusion model was only informed by the
same choice and response time data it was designed to fit. For
a representative participant, only 0.6% of their 8000 trials were
classified as contaminants, indicating either a remarkable ability
of the participant to remain on task (which is unlikely; see,
e.g., Killingsworth & Gilbert, 2010), or, more likely, to the limited
ability of behavioral data alone to segment trials into latent states.

Rather than relying solely on behavioral data, here we examine
whether augmenting cognitive models with an additional stream
of information – such as neural data, whether that involves single
cell recordings, EEG, MEG, or fMRI – aids identification of latent
data-generating states underlying observed behavior. Our aim is
to investigate whether the addition of neural data can improve our
account of the behavioral data, and in particular the identification
of latent states, rather than accounting for the joint distribution
of behavioral and neural data (for joint modeling approaches,
see Turner, Forstmann et al., 2013). To this end, we condition
on neural data; that is, we do not consider generative models
of neural data. Rather, we explore tractable and simple methods
that augment cognitive models using neural data as covariates in
order to gain greater insight into cognition than is possible through
consideration of behavioral data in isolation.

Throughout the manuscript, we position our work within the
theoretical context of mind wandering. Over the past decade, the
scientific study ofmindwandering has received great interest from
behavioral (e.g., Bastian & Sackur, 2013; Cheyne, Solman, Carriere,
& Smilek, 2009) and neural (e.g., Andrews-Hanna, Reidler, Sepul-
cre, Poulin, & Buckner, 2010; Christoff, Gordon, Smallwood, Smith,
& Schooler, 2009; Weissman, Roberts, Visscher, & Woldorff, 2006)
perspectives, though there have been few attempts to integrate
the two streams of information in a model-based cognitive neu-
roscience framework (for an exception, see Mittner et al., 2014).
The study of mind wandering is particularly relevant to our aim
of identifying latent cognitive states as it is a phenomenon that
has been studied under various, qualitatively distinct, hypotheses
about how latent states give rise to observed performance (Small-
wood & Schooler, 2006, 2015), which we expand upon below.
Mind wandering, therefore, serves as an excellent vehicle through
which to demonstrate our methodological approach. Our work-
ing hypothesis is that mind wandering is a neural state or process
that affects the parameters of cognitive models, which in turn af-
fect observed behavioral performance (Hawkins, Mittner, Boekel,
Heathcote, & Forstmann, 2015). Our approach inverts this chain of
causation:we fit behavioral datawith cognitivemodels that are in-
formedwith neural data, and compare their fit to cognitivemodels
that are not informed with neural data. This allows us to assess
what can be learnt about mind wandering in a way that is not fea-
sible without the discriminative power of the neural data.

Through the lens of cognitive models of speeded decision-
making, we consider two approaches that use neural data to
constrain cognitive models, which in turn helps to identify
both when people mind wander and the effect it has on task
performance. We note, however, that our methods generalize to
any domain of study that utilizes neural data – or any additional
stream of data, for that matter – to aid identification of latent data-
generating states and fit the behavioral data arising from those
states with cognitive models.

We consider two general approaches to incorporating mind
wandering within a modeling framework. The first approach
assumes that observed behavior arises from a mixture of discrete
latent states, which may have partially overlapping or unique sets
of data-generating parameters.We refer to this as theDiscrete State
Representation. One might think of the latent states as reflecting
an on-task state, where attention is directed to external stimuli,
or task-related thoughts, and an off-task state, where attention is
directed to internal stimuli, or task-unrelated thoughts, similar
to the perceptual decoupling hypothesis (Smallwood & Schooler,
2015). Alternatively, the latent states might reflect executive
control, where an executive system oversees maintenance of
goal-directed behavior, and executive failure, which occurs when
the executive control system fails to inhibit automatically cued
internal thoughts that derail goal-directed behavior (McVay &
Kane, 2010). Regardless of the labels assigned to the latent states,
models assuming a discrete state representation aim to first
identify the mutually exclusive latent states and then estimate
partially overlapping or distinct sets of model parameters for the
discrete states (for a similar approach, seeMittner et al., 2014). We
note that a discrete state representation is also considered outside
the context of mind wandering. For example, Borst and Anderson
(2015) developed a hidden semi-Markov model approach that
used a continuous stream of EEG data to identify discrete stages
of processing in associative retrieval.
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The second approach generalizes the discrete state representa-
tion, relaxing the assumption that latent states are mutually ex-
clusive. This approach assumes a dynamically varying latent state
where, for example, at all times a participant will fall at some point
along a continuum that spans from a completely on-task focus
through to a completely off-task focus. We refer to this second
approach as the Continuous Dimension Representation, and it
approximates ‘executive resource’ theories of mind wandering
(e.g., Smallwood & Schooler, 2006; Teasdale et al., 1995). This class
of theories states that executive resources are required to perform
goal-directed tasks. The pool of resources is finite, and competing
demands, such as mind wandering from the task at hand, reduce
the resources available to complete the primary task, leading to
suboptimal task performance. The resources available to complete
a task can effectively be considered a continuous variable: at times
there are more resources available to complete the task than oth-
ers, and this can vary in potentially complex ways from one trial to
the next. Models assuming a continuous dimension representation
aim to regress single-trial measures of neural activity onto struc-
tured trial-by-trial variation in model parameters (for similar ap-
proaches, see Cavanagh et al., 2011; Frank et al., 2015;Nunez, Srini-
vasan, & Vandekerckhove, 2015; Nunez, Vandekerckhove, & Srini-
vasan, 2017). To the extent that the single-trial regressors index
the latent construct of interest, this approach dynamically tracks
the effect of neural fluctuations on changes in model parameters.

We use a simulation-based approach to explore how well
neural data constrains the identification of data-generating states
when fitting cognitivemodels to behavioral data.We first simulate
data from models that assume a non-stationary data-generating
process (i.e., a latent cognitive state that changes throughout the
course of an experiment). We then fit models to the synthetic data
that vary in their knowledge of the latent data-generating states:
some models completely ignore the presence of a latent mixture
in data (i.e., they are misspecified), and others assume partial
through to perfect knowledge of the latent data-generating states.
The degree of partial knowledge about latent states is assumed
to reflect the precision of neural data that informs the analysis.
When a neural measure or measures are perfectly predictive of
the latent generating states, the partition of behavioral data to one
latent state or another mirrors the data-generating process, and
the model that assumes a mixture of latent generating states will
be preferred over the (misspecified) model that marginalizes over
latent states. As the strength of the relationship between the neural
measure and the partition in behavioral data weakens, we ought
to obtain less evidence for the model that assumes a mixture of
latent states in data. Our primary aim is to determine the amount
of noise that can be tolerated in the relationship between neural
and behavioral data before the misspecified model that collapses
across the (true) latent states is preferred. Our outcome measure
of interest is, therefore, the probability with which we select the
model that assumes more than one latent generating state in data,
which was the true data-generating model in all cases.

1.1. Diffusion model of speeded decision-making

In all simulations, we studied sequential sampling models of
decision-making, and the diffusion model of speeded decision-
making in particular (Forstmann et al., 2016; Ratcliff & McKoon,
2008; Smith & Ratcliff, 2004). The diffusionmodel, aswithmost se-
quential samplingmodels, assumes that simple decisions aremade
through a gradual process of accumulating sensory information
from the environment. The sensory information influences an evi-
dence counter that tracks support for one response alternative over
another; for example, whether amotion stimulusmoves to the left
or right of a display, orwhether a string of letters represents aword
or not. The evidence counter continues to track evidence for the
Fig. 1. Schematic representation of the diffusion model of speeded-decision
making. Reproduced with permission from Hawkins et al. (2015).

two response alternatives until it crosses an absorbing boundary –
a pre-determined threshold amount of evidence – which triggers a
response. The predicted choice is determined by the boundary that
was crossed, and the predicted response time is the time taken for
the process to reach the boundary plus a fixed offset time to ac-
count for processes such as encoding the stimulus and producing
a motor response (e.g., a button press).

Fig. 1 provides a schematic overview of a choice between
leftward and rightwardmotion in the diffusion decisionmodel. The
model has four core processing parameters: the starting point of
evidence accumulation, which can implement biases toward one
response or another (z); the average rate at which information
is extracted from the stimulus, known as the drift rate (v), the
amount of evidence required for a response, which represents
cautiousness in responding, known as boundary separation (a);
and the time required for elements outside the decision process,
known as non-decision time (Ter ). Modern implementations of
the diffusion model assume trial-to-trial variability in some
model parameters to reflect the assumption that performance has
systematic and nonsystematic components over the course of an
experiment (Ratcliff & Tuerlinckx, 2002). These parameters include
the drift rate, starting point, and non-decision time. Specifically,
on trial i the drift rate is sampled from a Gaussian distribution
with mean v and standard deviation η, vi ∼ N(v, η); the start
point is sampled from a uniform distribution with range sz, zi ∼

U(z −
sz
2 , z +

sz
2 ); and the non-decision time is sampled from a

uniform distribution with range st , Ter,i ∼ U(Ter −
st
2 , Ter +

st
2 ).

In all cases, we simulated data from a hypothetical experiment
of a two-alternative forced choice task with a single condition.
The use of a single experimental condition mirrors almost all
laboratory-based studies of mind wandering, which tend to focus
on vigilance tasks such as the sustained attention to respond
task (SART; Robertson, Manly, Andrade, Baddeley, & Yiend, 1997;
Smallwood & Schooler, 2006; Smilek, Carriere, & Cheyne, 2010).
The SART is typically implemented as a single-condition go/no-
go task with infrequent no-go stimuli (i.e., stimuli requiring a
response to be withheld), with the aim of inducing boredom
and hence mind wandering. The sequential sampling models we
study here can be generalized to experimental paradigms with
partial response time data – such as go/no-go and stop-signal tasks
(Gomez, Ratcliff, & Perea, 2007; Logan, Van Zandt, Verbruggen, &
Wagenmakers, 2014) – so the results reported here are relevant
to the tasks and experimental paradigms typically studied in the
mind wandering literature.
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Fig. 2. An exemplary synthetic data set generated from the on-task and off-task states of the dual-state model (panels a and b), and the fit of the single-state model to the
same data set, collapsed over latent states (panel c). Response time distributions for correct responses are shown to the right of zero and distributions for error responses are
shown to the left of zero (i.e., mirrored around the zero-point on the x-axis). Green and red lines show correct and error responses, respectively, from the posterior predictive
distribution of the single-state model (panel c). The probability of a correct response in synthetic data is denoted p, and the corresponding predicted probability from the
single-state model is denoted p̂ (panel c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Our primary aim was to identify the latent data-generating
states in data. This is a question pertinent to the individual-
participant level – when was the participant on-task, and when
were they off-task – thus we simulate and fit models to data at the
individual-participant level.

2. Discrete state representation

2.1. Generating synthetic data

Synthetic datawere generated from the discrete state represen-
tation by assuming that 80% of trials were from the on-task state
and the remaining 20% of trials were from the off-task state. One
could manipulate the ratio of on-task to off-task trials as a param-
eter of the model recovery exercise. We chose instead to select a
fixed value that might be considered a conservative estimate of re-
ported rates of mind wandering in experimental tasks that mirror
the setup of our simulated experiment, so as to not overstate the
estimated power of our results (e.g., some have reported that mind
wandering occurs between 30%–50% of the time; Killingsworth &
Gilbert, 2010).1

In generating synthetic data, we constrained the parameters of
the on-task and off-task states to identical values, except for the
magnitude of the drift rate.Wemade the plausible assumption that

1 Nevertheless, to assure ourselves that our results were not dependent on the
ratio of on-task to off-task trials and the parameter settings described below, we
conducted a parallel analysis where synthetic data were generated from a discrete
state representation with an equal ratio of on-task to off-task trials and a lower
drift rate for the on-task state (von = 1.8). Following (4) and (5), these settings give
an equivalent effect size to that reported in the primary simulation. All results of
the parallel analysis mirror those shown in the left panel of Fig. 3. Combined with
the results shown in Fig. 4, this finding suggests that the primary factor influencing
recovery of the true latent generating state is the size of the effect that the neural
data exert on the latent state, and not particular data-generating parameter settings
of the cognitive model.
the drift rate for the on-task state was larger than the drift rate for
the off-task state, which implies that mind wandering reduces the
efficiency of information processing. This assumption is consistent
with empirical results suggesting that mind wandering leads to
slower and more variable response times with a greater error
rate (e.g., Bastian & Sackur, 2013; Cheyne et al., 2009), which
is qualitatively similar to the effect of a reduction in drift rate.
Specifically, we set the drift rate for the on-task state to von = 2
and the off-task state to voff = 1. All other parameters were set
to the following values, for both states: a = 1, z = 0.5 (i.e., no
response bias), Ter = 0.15 s, η = 1, and the trial-to-trial variability
parameters for the start point of evidence accumulation and non-
decision timewere both set to 0. The diffusion coefficientwas fixed
to s = 1 in all synthetic data andmodel fitswere obtainedusing the
‘rtdists’ package for the R programming environment (Singmann,
Brown, Gretton, & Heathcote, 2016). An exemplary synthetic data
set is shown in Fig. 2(a) and (b). The synthetic data of the on-
task state differed to the off-task state in terms of higher accuracy
and faster mean response times that were less variable. These
differences indicate that there was a reliable signal in behavioral
data that differentiated the latent states.

We generated synthetic data across a wide range of sample
sizes (i.e., number of trials completed by a synthetic participant).
Our motivation was to determine the efficiency of neural data to
identify discrete latent states using sample sizes considered very
small for fitting sequential sampling models to data, through to
an approximate asymptotic limit with very large sample sizes.
Specifically, we simulated 200 synthetic data sets from each of
sample sizes 100, 250, 500, 1000, 2000, 5000, and 10000 trials.
Therefore, for sample sizes of 100 trials, for example, there were
80 ‘on-task’ and 20 ‘off-task’ trials, and for 10000 trials there were
8000 ‘on-task’ and 2000 ‘off-task’ trials.

2.2. Model specification

We fit two types of diffusion models to each synthetic data set:
a single-state and a dual-state model. In the Appendix, we outline
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the steps involved in performing an analysis assuming a discrete
state representation and provide accompanying R code (R Core
Team, 2016) that uses the rtdists package (Singmann et al., 2016).

2.2.1. Single-state model
The single-state model is a misspecified model in the sense

that it marginalizes (collapses) over trials generated from the on-
task and off-task latent states; this approach is equivalent to not
using any neural data to inform cognitive modeling. The single-
state modeling is representative of the dominant approach in the
literature that generally makes no attempt to account for potential
task-unrelated thoughts and their effects on task performance.
The single-state model freely estimated the following parameters
from data: start point (z), trial-to-trial variability in start point (sz),
boundary separation (a), drift rate (v), trial-to-trial variability in
drift rate (η), and non-decision time (Ter ). Trial-to-trial variability
in non-decision time was fixed to st = 0. We made this decision
as we deemed it unlikely that the parameter estimation routine
would compensate for the misspecification of the single-state
model with a change in the parameter reflecting non-decision
time variability, and our Bayesian parameter estimation routines
were computationally much more feasible without the numerical
integration required for estimation of the st parameter.

2.2.2. Dual-state model
The dual-state model acknowledged the on-task and off-task

generating states in data, by allowing for differences in drift
rate between trials allocated to the on-task and off-task states
(i.e., freely estimated von and voff , respectively). All other model
parameters were constrained to be equal across the two states
(as in the single-state model, st = 0 was fixed everywhere). The
dual-statemodel, therefore, assumed some knowledge of the data-
generating structure in that there were two states that differed
only in drift rate. Our results can thus be interpreted as a ‘best case’
scenario; additional misspecification in free parameters across the
discrete states, or in the number of discrete states, may worsen
model recovery relative to the single-state model.

We did, however, introduce misspecification to the dual-state
model in terms of the reliability with which trials were allocated
to the true generating state. That is, we systematicallymanipulated
the probability that trials generated from the on-task state were
in the set of trials allocated to the on-task state in the fitted
model, and similarly for the off-task state. In the sense that the
set of trials generated from the on-task state was not necessarily
the same set of trials fitted as the ‘on-task’ state, this model is
misspecified.We refer to this formofmisspecification as state-level
misspecification, which is distinct from parameter misspecification
(i.e., allowing the wrong parameters to vary with state). State-
level misspecification mimics the capacity for an external stream
of information, such as a neural data, to reliably partition trials into
the true (data-generating) latent state. For example, Mittner et al.
(2014) trained a support vectormachine to use a range of fMRI and
pupil measurements to classify trials from a stop-signal paradigm
to on-task or off-task states. Their classifier achieved expected
accuracy of 79.7% (relative to self-reported mind-wandering),
implying that they could expect to correctly classify four out
of every five trials to the on-task or off-task states, assuming
there was a true distinction in the two latent states in the data-
generating process.

Although it is likely that our simulated neural data leads
to better-than-chance classification accuracy, no combination of
neural measures will achieve 100% accuracy. To explore the effect
of classification accuracy on recovery of the (true) dual-state
model, we manipulated state-level misspecification in terms of
the probability of correctly assigning a trial to its true generating
state, which we denote pcorrect . For example, pcorrect = 0.8 indicates
that every trial that was generated from the on-task state had 0.8
probability of being correctly assigned to the on-task state in the
fitted model, and 0.2 probability of incorrect assignment to the
off-task state in the fitted model. The reverse was also assumed:
trials generated from the off-task state had 0.8 probability of
assignment to the off-task state in the fitted model, and 0.2
probability of assignment to the on-task state. This value mimics
the classification accuracy achieved in Mittner et al. (2014). We
explored a range from pcorrect = 0.5 (the neural data provide no
information about the latent state, so trials are randomly allocated
to the on- or off-task state) through to pcorrect = 1 (the neural data
provide perfect knowledge of the generating state), in increments
of 0.05. Therefore, for each synthetic data set, we compared the fit
of the single-state model to 11 dual-state models corresponding to
the range in pcorrect . For each value of pcorrect , we determined which
model (single state, dual state) provided the most parsimonious
account of the synthetic data set.

2.3. Parameter estimation

We sampled from the joint posterior distribution of the
parameters of each model using differential evolution Markov
chain Monte Carlo (Turner, Sederberg, Brown, & Steyvers, 2013).
We assumed prior distributions that had a considerable range
around, but conveyed relatively little information about, the true
data-generating parameter values:
v [single-state] ∼ N(0, 2, −5, 5),
von, voff [dual-state] ∼ N(0, 2, −5, 5),
a, sv ∼ N(1, 1, 0, 2),
z, sz, Ter ∼ Beta(1, 1),
where N(µ, σ , a, b) denotes a Normal distribution with mean µ,
standard deviation σ , truncated to a lower limit of a and upper
limit of b, and Beta(α, β) denotes a Beta distribution with shape
parameters α and β . Parameters z and sz were estimated as a
proportion of parameter a, and hence were constrained to the unit
interval.

Independently for all models, we initialized 18 chains with
random samples from the prior distribution. Chains were first
run for 250 iterations with the differential evolution probability
of migration set to 0.05. Once initialization was complete, the
migration probability was set to zero and we sampled from the
joint posterior distribution of the parameters in phases of 1000
iterations. After each phase we checked chain convergence using
themultivariate potential scale reduction factor (R̂ statistic; Brooks
& Gelman, 1998), using a criterion of R̂ < 1.15 to indicate
convergence (visual inspection of a sample of chains supported this
conclusion).2 If the chains had converged after a phase of 1000
iterations, the parameter estimation routine was terminated. If
not, another 1000 iterations were started from the end point of
the previous 1000 iterations, and the procedure repeated until the
chains had converged.

2.4. Model selection

Model selection was performed with the Deviance Information
Criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002),3

2 Preliminary simulations indicated lower values of R̂ (e.g., R̂ < 1.1) were
producedby longer series, butwithout any change in conclusions;we chose a length
of 1000 as a compromise that kept computational demands feasible.
3 DIC has been criticized because it can select models that are too complex.

Gelman et al. (2014) favor instead an information criterion that approximates
Bayesian leave-one-out cross validation, WAIC (Watanabe, 2013); for a number of
checks we performed on our extensive simulation study DIC and WAIC produced
almost identical results. The code we provide to apply our analyses allows
calculation of both information criteria, so users can use their preferred choice.
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which is computed using samples from the joint posterior
parameter distribution. DIC is defined as DIC = D(θ) + 2pD,
where D(θ) is the deviance at the mean of the sampled posterior
parameter vector θ , and pD is the effective number of model
parameters,where pD = D−D(θ), andD is themeanof the sampled
posterior parameter deviance values. Lower values of DIC indicate
the better model for the data (i.e., the most parsimonious tradeoff
between goodness of fit and model complexity).

We converted estimated DICs for each comparison of the
single- and dual-state models to model weights (for overview,
see Wagenmakers & Farrell, 2004). If the set of models under
consideration contain the true data-generating model, then these
weights provide estimates of the posterior probability of each
model (i.e., the probability conditional on the data of each model
being the true model relative to the set of candidate models under
comparison). Otherwise, model weights provide a gradedmeasure
of evidence rather than the all-or-none decision rule that can arise
when interpreting ‘raw’ information criteria. Model weights are
also on the same scale for different data-set sizes (i.e., they fall
on the unit interval), which allowed for simple comparison of
model recovery across the sample sizes that were systematically
manipulated in our study.

Model weights are calculated by first considering differences in
DIC for eachmodel fit to a givendata set:∆i(DIC) = DICi−min DIC,
where min DIC is the lowest (i.e., best) DIC among the set of K
models under consideration. Then, the DIC-basedweight formodel
i, wi(DIC), from the set of K models is given as

wi(DIC) =

exp

−

1
2∆i


DIC


K

k=1
exp


−

1
2∆k


DIC

 . (1)

We calculated model weights for pairwise comparisons between
the single- and dual-state models. All synthetic data were gener-
ated from the dual-state model so our primary outcome measure
was the weight in favor of the dual-state model (i.e., successful
model recovery), given by a simplified form of Eq. (1),

wdual(DIC) =

exp

−

1
2∆dual


DIC


exp


−

1
2∆single


DIC


+ exp


−

1
2∆dual


DIC

 . (2)

We calculatedmodel weights according to (2) for all relevant com-
parisons, and then averaged over the 200 Monte Carlo replicates
within each state-level misspecification (0.5, 0.55, . . . , 0.95, 1) by
sample size (100, 250, 500, 1000, 2000, 5000, 10000) cell of the
design.

2.5. Results and discussion

The single- and dual-statemodels provided an excellent fit to all
synthetic data sets. Fig. 2(c) shows the fit of the single-state model
to an exemplary synthetic data set. It is perhaps surprising, but
also instructive, that the misspecified single-state model provided
such a precise account of data generated from two discrete latent
states that had different data-generating parameters. It appears
that the single-state model is able to mimic the dual-state model,
at least for the parameter settings we investigated. Specifically,
when the drift rate is the only parameter that varies across
discrete states – where von and voff , respectively, represent drift
rates for the on-task and off-task states, and pon represents the
proportion of on-task trials – the estimated (single) drift rate
of the misspecified single-state model approximates a weighted
combination of the two: von × pon + voff × (1 − pon). To
mimic the variability of the mixture of drift rate distributions
– which is increasingly greater than the variability of either of
the mixture components as the two means increasingly differ
– there is an increase in the standard deviation of the trial-
to-trial variability in drift rate (η) estimate for the single-state
model. For the difference in drift rates that we investigated this
increase was only marginal, and the slightly more variable single
drift rate distribution approximated themixture distribution quite
well (see also discussion around formulae (4) and (5)). This
approximation will likely break down as the difference in means
becomes extreme, but as the difference we examined was quite
substantial it seems unlikely that visual examination of goodness-
of-fit alone would be sufficient in practice to detect a misspecified
single-state model.

Since both models provided a visually compelling fit to
behavioral data, we discriminated between the single- and dual-
state models on the basis of model weights, as is standard in most
research comparing competing cognitive models. The left panel of
Fig. 3 summarizes the model recovery simulation. The weight in
favor of the dual-state model – the true data-generating model
– is shown on the y-axis. Light through to dark lines indicate
the amount of state-level misspecification, where classification to
the true latent state was manipulated from chance performance
(pcorrect = 0.5, lightest line) through to perfect classification
(pcorrect = 1, darkest line). The key comparison is the ability to
identify the true latent generating state on the basis of cognitive
models fit to behavioral data, across a range of neurally-informed
classification accuracies.

As expected, evidence in favor of the dual-statemodel increased
as the number of trials in the synthetic data increased (larger
values on the x-axis). This was, however, heavily influenced by
the amount of state-level misspecification. In our simulations,
this represents the capacity of the neural data to reliably classify
trials to their true latent (data-generating) state. Whenever state-
level misspecification was above chance (i.e., pcorrect > 0.5), the
evidence in favor of the dual-statemodel increasedwith increasing
sample size. In particular, it reached ceiling by a sample size
of 1000 trials when state-level misspecification was completely
absent (pcorrect = 1), and by the upper limit of the sample sizes
we explored (10000 trials) for moderate classification accuracy
(pcorrect ≥ 0.7). For more plausible sample sizes, however,
recovery of the true model was more modest. Even with no state-
level misspecification, the weight for the dual-state model never
exceeded 0.8 for sample sizes less than 250 trials. We note that a
modelweight of 0.8 corresponds to a difference of approximately 3
units on the rawDIC scale. Small differences in information criteria
such as this are often considered as providing little more than
weak evidence (e.g., Burnham & Anderson, 2004; Kass & Raftery,
1995; Raftery, 1995). Even placing optimistic bounds on the level
of classification accuracy that is possible with real neural data
(e.g., pcorrect = 0.9), the weight for the dual-state model only
exceeded 0.8 at a sample size of approximately 400 trials, and
did not reach a decisive level of evidence until the sample size
exceeded 1000 trials.

On a more technical point, when state-level misspecification
was at chance (pcorrect = 0.5), the single-state model ideally
ought to garner increasing evidence with increasing sample size
(i.e., a gradual shift toward lower values on the y-axis). This should
occur since the classification to discrete states in the fitted model
was completely uninformed by the true data-generating values,
so the estimated drift rates for trials classified to the on- and off-
task states were close to identical. Under these conditions, the
dual-state model provides no predictive benefit over the single-
state model, so we should favor the simpler single-state model,
and increasingly so for larger sample sizes. Examination of Fig. 3,
however, indicates that this did not occur; model weight was
independent of sample size. This result is due to a property
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Fig. 3. Model recovery formediumeffect sizes. The left panel shows theweight in favor of the dual-statemodel over the single-statemodel in themodel recovery simulations
of the discrete state representation. The y-axis represents the DIC-derived posterior model probability of the dual-state model, the x-axis represents the number of trials
in the synthetic data set, and color gradations represent the range in pcorrect of the state-level misspecification of the dual-state model. The right panel shows the weight in
favor of the covariate model over the standard model in the model recovery simulations of the continuous dimension representation. The y-axis represents the DIC-derived
posterior model probability of the covariate model and color gradations represent the range in R2 of the covariate measurement precision of the covariate model. Horizontal
gray lines indicate the point of equivalent evidence between the twomodels (solid lines), and a difference of approximately 3 DIC units in favor of the dual-state model (left)
and covariate model (right; upper dashed lines) or the single-state model (left) and standard model (right; lower dashed lines). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
of the model selection criteria used here. DIC penalizes model
complexitywith a fixed offset (the effective number of parameters,
pD), which means that the penalty against the dual-state model
over the single-state model when pcorrect = 0.5 is (almost) a
fixed value as a function of the sample size manipulation in our
study, hence the approximately flat line at y = 0.4. This problem
would be addressed through the use of model selection indices
that are consistent in the sense that they converge to the true
answer with increasing sample size, such as Bayes factors. At
the time of this work, calculation of Bayes factors for complex
cognitive models such as the diffusion model is computationally
extremely expensive. This is an active field of research and with
future developments we hope to incorporate suchmodel selection
measures in our work (for a recent example, see Steingroever,
Wetzels, & Wagenmakers, 2016).

In summary, our simulation study indicates that it can be
difficult to identify discrete latent states on the basis of cognitive
models fit to behavioral data. Of course, it is possible that changes
to the parameters of the simulation may alter these results. For
example, we could manipulate the ratio of on-task to off-task
trials in synthetic data, the number of model parameters that
differed across the latent states and the degree of difference,
or the level of parameter misspecification in the models fit
to the synthetic data. On the basis of the available evidence,
however, we conclude that obtaining compelling evidence for the
identification of mutually exclusive latent states – such as phases
of on-task and off-task performance – requires very large sample
sizes (5000 + trials) with moderate (or better) neural classifiers,
or moderate (or better) sample sizes with very good neural
classifiers. Our intuition is that neither of these situations arise
in the majority of real psychological or neuroscience experiments.
Nevertheless, for almost all sample sizes we obtained at least some
evidence in favor of the true model for plausible sample sizes
(e.g., a few hundred to a few thousand trials) when data were
partitioned to discrete states on the basis of neural classifiers that
performed within an impressive but plausible range for real data
(e.g., pcorrect = 0.7 − 0.85).

3. Continuous dimension representation

The first model recovery analysis indicated that identifying
discrete latent states on the basis of cognitive models fit to
behavioral data is difficult but not impractical. We now investigate
a generalization of the discrete state representation that considers
the latent state as a continuous dimension. In the context of
mind wandering, such a continuum could represent a dynamically
fluctuating state where people drift into phases of more on-
task or more off-task focus, without imposing a rigid boundary
between mutually exclusive states. The idea underlying the
continuous dimension representation is more general, though,
mirroring constructs in many cognitive theories, such as the
graded memorability of different items in a recognition memory
experiment. Indeed, it was to account for just such graded
variability that Ratcliff (1978) introduced trial-to-trial variability
in drift rates into the diffusion model, which has since become a
standard assumption (i.e., η > 0).

The continuous dimension representation can be interpreted
in two ways. The first assumes that there is an external stream
of information, which we assume throughout to be some form
of neural data, that reliably indexes a latent state, such as
mind wandering. In the mind wandering literature, for example,
measures of connectivity and activity of the default mode network
are increased during phases of reduced attention toward the
primary task (e.g., Andrews-Hanna et al., 2010; Christoff et al.,
2009; Mason et al., 2007; Mittner et al., 2014; for meta-analysis,
see Fox, Spreng, Ellamil, Andrews-Hanna, & Christoff, 2015). In this
case, moment-to-moment fluctuations in activity of the default
mode network could be considered an online index of mind
wandering. This stream of neural data can then be used as a
covariate in the cognitivemodel; specifically, single-trialmeasures
of default mode network activity can be regressed onto structured
trial-by-trial variation in the parameters of the model. This allows
exploration of the effect of the neural covariate on different
model parameters and permits quantitative tests of the covariate-
parameter pairings that provide the best fit to behavioral data.
This approach has the potential to provide insights regarding
how the latent state (e.g., mind wandering as indexed by activity
of the default mode network) affects cognition (e.g., processing
efficiency; drift rate) and consequent task performance (e.g., more
errors, slower response times).

The second way to interpret a continuous dimension is that
the neural measure provides a direct ‘readout’ of a process
assumed in the cognitive model. This approach allows for precise
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tests of ‘linking propositions’ (Schall, 2004); explicit hypotheses
about the nature of the mapping from particular neural states
to particular cognitive states. As an example of this approach,
Cavanagh et al. (2011) proposed that response caution in conflict
tasks is modulated by connectivity between the subthalamic
nucleus and medial prefrontal cortex. To test this hypothesis, the
authors first estimated single-trial measures of theta band power
from neural oscillations in ongoing EEG activity over the medial
prefrontal cortex, which was then regressed onto the value of the
decision boundary parameter of the diffusion model. This single-
trial regressor approach estimates regression coefficients that
indicate the valence and magnitude of the relationship between
theneuralmeasure andobservedperformance, via the architecture
of the cognitivemodel. Cavanagh et al. (2011) found that increased
theta power led to a subsequent increase in the decision boundary
(i.e., a positive value of the regression coefficient) for trials
with high but not low conflict. A control analysis indicated that
theta power had no trial-level relationship with drift rate (i.e., a
regression coefficient centered at zero), indicating a selective
effect of the neural measure on a model parameter. This example
highlights how single-trial regression permits quantitative tests of
hypotheses about brain–behavior relationships.

Regressing neural data onto the parameters of cognitivemodels
at the single-trial level has the desirable property that it provides
a tight quantitative link between neural and behavioral data (de
Hollander, Forstmann, & Brown, 2016). Furthermore, although
we used custom scripts for all analyses reported here – because
we needed to automate a large number of replications – there
are excellent, freely available programs that implement single-
trial regression for hierarchical and non-hierarchical Bayesian
parameter estimation for the diffusion model (HDDM toolbox for
Python; Wiecki, Sofer, & Frank, 2013), which removes barriers to
implementation of these methods. In the Appendix, we outline the
steps involved in performing single-trial regression and provide
accompanying R code to implement these steps.

In this section, we assessed whether the trial-by-trial influence
of an external stream of information, such as a neural measure, is
identifiable inmodels fit to behavioral data. In previous simulation
studies, Wiecki et al. (2013) found that single-trial covariates are
well recovered in a hierarchical estimation setting for moderate
effect sizes and moderate number of trials in the experiment. We
build on Wiecki et al.’s findings to explore how often a model that
incorporates a single-trial neural covariate – which was the true
model in all cases – was preferred over the ‘standard’ diffusion
model that uses no trial-level covariates.

3.1. Generating synthetic data

Synthetic data were generated from a diffusion model where
a neural signal modulated individual-trial drift rates: trials with
larger-than-average neural signals had larger-than-average drift
rates and trials with smaller-than-average neural signals had
smaller-than-average drift rates. We assumed that the neural
covariate would be pre-processed and normalized prior to
modeling. To this end, we simulated a single value of the neural
covariate for every synthetic trial via random draws from the
standard normal distribution and explored the effect of the neural
covariate on recovery of the data-generating model.

3.1.1. Covariate model
Synthetic data were generated from a model that assumed

trial-to-trial variability in drift rate had systematic fluctuations,
via the neural covariate, and unsystematic (random) fluctuations,
via parameter η, which we refer to as the Covariate model. We
assumed that the trial-level neural covariate was mapped via
simple linear regression to structured trial-by-trial variation in
drift rate. Specifically, drift rates were distributed according to the
value of the normalized covariate (d) and a regression coefficient
(β), such that the drift rate (v) on trial i is:

vi ∼ v + β · di + N(0, η). (3)

The covariate model thus assumed that the drift rate on trial i, vi,
had amean component defined as a linear function of an intercept,
v, representing average performance in the experiment, and the
magnitude and valence of the neural measure on trial i, di, scaled
by a regression coefficient, β , which is an index of effect size, and
a random component involving samples from a Gaussian distri-
bution with mean 0 and standard deviation η. This model reflects
the plausible assumption that our measured neural covariate has a
generative influence on drift rate (through parameter β), but there
are also unmeasured, randomly distributed influences on drift rate
(through parameter η).

3.1.2. Effect size of the neural covariate
We matched the effect size (β) studied in the continuous

dimension representation to the effect size studied in the discrete
state simulations in terms of the proportion of variance accounted
for by the neural information. Specifically, if pon represents the
proportion of on-task trials in the discrete state representation, and
x1 and x2, respectively, represent sampled drift rates of the on-task
and off-task states, where x1 ∼ N(von, ηon) and x2 ∼ N(voff , ηoff ),
then the weighted mean drift rate of the mixture is

Mdiscrete = pon · von + (1 − pon) · voff , (4)

with variance

Vdiscrete = pon · η2
on + (1 − pon) · η2

off + pon · (von − Mdiscrete)
2

+ (1 − pon) · (voff − Mdiscrete)
2. (5)

Substituting the values used in the discrete state simulations
(pon = 0.8, von = 2, voff = 1, and ηon = ηoff = 1) into (4)
and (5), we get Mdiscrete = 1.8 and Vdiscrete = 1.16. The proportion
of variance accounted for by the neural data in the discrete state
simulations was therefore

R2
discrete = 1 −

1
Vdiscrete

= 1 −
1

1.16
= 0.138,

which gives the medium effect size of rdiscrete =


R2
discrete = 0.371.

We used a comparable definition of effect size for the
continuous dimension representation. If the neural data is
distributed as d ∼ N(0, Vneural) with regression coefficient β and
base drift rate variability x ∼ N(0, η),4 then it follows that the
covariate model in (3) has variance

Vcontinuous = η + β · Vneural,

with proportion variance

R2
continuous =

β · Vneural

η + β · Vneural
. (6)

Rearranging (6) and setting R2
continuous = R2

discrete = 0.138, we get

β =
η · R2

continuous

Vneural(1 − R2
continuous)

= 0.16,

which is the value of the regression coefficient we used to
generate synthetic data. This value is broadly representative of
the few previous studies that have reported single-trial regression

4 Here we set Vneural = 1 without loss of generality and similarly both means at
zero as we are only concerned with proportions of variance.



150 G.E. Hawkins et al. / Journal of Mathematical Psychology 76 (2017) 142–155
coefficients in empirical studies using amodel-based neuroscience
framework; β ≈ 0.20 for drift rate effects in Nunez et al.
(2017), and β ≈ 0.09 and 0.04 for response threshold effects in
Cavanagh et al. (2011) and Frank et al. (2015), respectively. All
other parameters of the covariate model were set to the same
values as in the simulation of the on-task state of the discrete
representation.

We again generated synthetic data sets from the same range of
sample sizes as in the previous analysis; 200 synthetic data sets
from the covariate model for each of sample sizes 100, 250, 500,
1000, 2000, 5000, and 10000 trials.

3.2. Model specification

We fit two types of diffusion models to each synthetic data set:
the covariate model and a ‘standard’ model. The covariate model
was fit to all synthetic data sets with the drift rate assumptions
specified in (3). The second model neglected the information
contained in the neural covariate altogether, instead attributing
trial-to-trial variability in drift rate to unsystematic sources via the
η parameter; that is,

vi ∼ N(v, η).

We refer to this second model as the Standardmodel, reflecting its
dominant status in the literature (Ratcliff, 1978; Ratcliff &McKoon,
2008).

When the neural signal is measured with perfect precision, the
true latent data-generating model – the covariate model – should
be favored over the standard model. Such high measurement
precision, however, is not possible in real neural data. To examine
the effect of noisy neural data on the identification of a model
incorporating a neural covariate, we manipulated the level of
noise in the covariate that was fit to the synthetic data. That is,
we systematically diminished the correlation between the data-
generating value of the covariate and the fitted value of the
covariate, which we refer to as covariate measurement precision.
This manipulation mimics the setup of real experiments where we
(aim to) obtain neural measures that are noise-perturbed proxies
to the true neural state.

To systematically manipulate covariate measurement preci-
sion, for each synthetic data set we generated a new set of ran-
dom variables that served as the neural covariate in the models
that were fit to the synthetic data. The set of random variables,
which we refer to as ‘fitted covariates’, had correlations with the
data-generating value of the covariate ranging from r = 0 − 1
in increments of 0.1. The mean (zero), variance (one) and shape
(normal) of the fitted covariates were the same as that of the co-
variate distribution.5

5 Under this model of measurement noise, the relationship to the proportion of
variance in drift rates explained by mind wandering is more transparent than in
the discrete case where measurement noise is in terms of the proportion of correct
classifications. To see this, denote the proportion of variance in the measured
covariate (MC) by w, and the random variables representing the systematic effect
of the covariate and measurement noise by D ∼ N(0, 1) and M ∼ N(0, 1),
respectively. Hence, MC = w · D + (1 − w) · M , and so MC ∼ N(0, 1) as required.
Consequently, the overall drift rate random variable with themeasured covariate is
V ∼ v+β·MC = v+β·D+N(0,

√
1 + β · (1 − w)). These results show the additive

Gaussian assumption causes the difference between measurement noise and the
randomeffects on thedrift rate unrelated to the covariate not to be identifiable,with
the combination constituting what might be called the ‘‘effective’’ level of noise.
Given, r =

√
w, our manipulation of r is a manipulation of the effective noise level,

corresponding either to a change in the level of measurement noise, the level of
unrelated effects on drift rates, or some combination. We maintain the distinction
between the two constituents of effective noise in our description of results given
it makes clear the link to the discrete case, where in both cases the range of the
measurement noise manipulation is between no effect and the maximal effect size
(i.e., 0.138 = β/(1 + β), where β = 0.16).
We report covariate measurement precision below as the coef-
ficient of determination (R2) rather than Pearson correlation coef-
ficient (r). This allows for direct interpretation as the proportion of
variance that the noise-perturbed, fitted value of the covariate ac-
counts for in the true data-generating value of the neural covariate.
These results provide a benchmark for the minimum level of mea-
surement precision required for identifiability of cognitive models
that incorporate single-trial covariates.

3.3. Parameter estimation and model selection

We estimated model parameters using identical methods to
those described in the analysis of the discrete state representation,
with the only addition that we specified a prior distribution for the
covariate parameter of the covariate model: N(0, 1, −3, 3).

Model selection was also conducted in a parallel manner to
the first analysis. Our primary aim was to determine the covariate
measurement precision required to obtain evidence in favor of the
covariate model over the standard model. Therefore, we report
the model weight in favor of data generated from the covariate
(i.e., true) model over the standard model, following (2).

3.4. Results and discussion

All models provided an excellent fit to synthetic data so we
again adjudicated between them using model weights. The right
panel of Fig. 3 summarizes model recovery in a similar format to
the left panel. Larger values on the y-axis indicate more evidence
for the true (covariate) model over the standard model. Line
darkness indicates the level of covariate measurement precision,
where measurement precision was manipulated from complete
noise (R2

= 0, lightest line) through to perfectmeasurement (R2
=

1, darkest line). As before, the key comparison was the capacity
to identify the true generating model in neurally-informed
versus neurally-uninformed cognitive models fit to behavioral
data.

Evidence in favor of the true model generally increased with
the number of trials in synthetic data. As expected, however, this
was influenced by the level of covariate measurement precision.
When the covariatewasmeasuredwith very lowprecision –where
the fitted value of the covariate explained less than 5% of the
variation in the data-generating covariate – sample size had almost
no influence on recovery of the true model. This implies that when
neural data are poorly measured, or when the neural measure is
only a very weak proxy to the true latent process, then a binary
decisionwould select the standardmodel over a neurally-informed
model. That is, assumingunsystematic across-trial variation in drift
rate would be more parsimonious than regressing an overly noisy
neural measure onto drift rate.

Perhaps surprisingly, evidence for the true model converged
very slowly as a function of sample size. Even when the neural
covariate was perfectly measured (R2

= 1), the weight for the true
model did not exceed 0.8 until almost 2000 trials were observed;
the comparable sample size for the discrete state simulation
was 250 trials. For more plausible measurement precision – say,
approximately 33% – the weight for the true model exceeded
0.8 only when sample size exceeded approximately 4000 trials.
This result, and similar comparisons across the panels of Fig. 3,
suggests that the discrete state approach is a more powerful use
of neural data than the single-trial covariate approach, at least for
the parameter settings and effect size explored here. That is, neural
datamore heavily constrainmodel recovery when used as a binary
indicator of the latent state thanwhen regressed onto trial-by-trial
variation in model parameters.
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Fig. 4. Model recovery for large effect sizes. The left panel shows theweight in favor of the dual-statemodel over the single-statemodel for the discrete state representation.
The right panel shows the weight in favor of the covariate model over the standard model for the continuous dimension representation. All other details are as described in
Fig. 3.
4. Recovering neurally-informed cognitive models when neu-
ral data have a large effect size

The foregoing analyses indicate that when equated on a
medium effect size, neurally-informed discrete state models
are more reliably recovered than neurally-informed continuous
dimensionmodels. In this section, we confirm that when endowed
with a sufficiently large effect size the true model is well
recovered in both the discrete state and continuous dimension
representations. This result implies that both discrete and
continuous representations can indeed be identified in behavioral
data when the information contained in neural data relates to a
sufficiently strong effect.

We generated synthetic data sets where the neural data
strongly identified the latent state. Specifically, for the continuous
dimension representation we set the value of the neural covariate
to β = 0.5, with all other parameter settings as described in the
previous section. Following (6) this gives an effect size of r =

0.577. An equivalent effect size can be obtained in the discrete
state representation in multiple ways. We chose to enhance the
difference between the on- and off-task states in terms of a larger
drift rate for the on-task state (von = 2.414) and assuming an equal
ratio of on-task to off-task trials (pon = 0.5), with no changes in
other data-generating parameters. All other details were identical
to those used in the previous simulations, including the data
generation, sample size, introduction of noise to the (synthetic)
neural data, model specification, parameter estimation, andmodel
selection methods.

Fig. 4 shows recovery of the true model with a large effect size
in the discrete state and continuous dimension representations. A
striking finding was how quickly the evidence for the true models
converged as a function of the noise in neural data (state-level
misspecification and covariate measurement precision in the left
and right panels, respectively), even at relatively small samples
sizes (i.e., 250–500 trials) and moderate levels of noise. Although
recovery of the continuous dimension representation was much
improved for large versus medium effect sizes, the true model in
the discrete state representation was still recovered more reliably
when equating sample size and noise in neural data.

5. Conclusions

We investigated whether informing cognitive models with
neural data improves the ability to identify latent cognitive states.
This approach is increasingly common in the psychology and
neuroscience literatures (e.g., Borst & Anderson, 2015; Mittner
et al., 2014; Turner, Forstmann et al., 2013; Turner, Van Maanen,
& Forstmann, 2015). However, there have been few systematic
studies of the benefits to model recovery that such an approach
may bear. We found that, when the neural data can discriminate
a moderate effect on performance, it can be difficult to reliably
identify mutually exclusive latent states when neurally-informed
cognitive models are applied to behavioral data. As expected,
model recovery was very good when the synthetic experimental
design was far removed from typical experiments (i.e., large
sample size, good neural classification accuracy). Model recovery,
however, was still within acceptable bounds even with more
feasible experimental designs (i.e., between 500 and 1000 trials)
with moderate classification accuracy.

In contrast, when we relaxed the assumption that latent states
are discrete, we found that a latent state that can dynamically
move along a continuous dimension substantiallyworsenedmodel
recovery even though mind wandering accounted for the same
proportion of variance (i.e., had the same effect size) in the
continuous and discrete versions. Model recovery was relatively
poor for the sample sizes typically observed in psychological
experiments (i.e., up to 1000 trials per participant), and convincing
evidence for the true data-generating model was only obtained
with sample sizes of approximately 5000 trials ormore, evenwhen
neural covariates were (hypothetically) measured with perfect
precision. This result implies thatwhen the neural covariate is only
a distant proxy to the true data-generating process, a standard
model that is ignorant with respect to neural data will often be
preferred over a neurally-informed cognitive model, and, within
reason, this is not dependent on sample size.

We believe these results highlight two important issues in the
use of neurally-informed cognitivemodels. The first, more obvious
issue is that we must maximize the precision in our measurement
of neural data. The second, more subtle issue is that we must
use theory-based, hypothesis-driven tests of neural covariates on
model parameters; that is, we must aim to maximize the possible
relationship between the fitted value of the covariate and the
true data-generating process. The first issue can be addressed
using emerging technologies such as ultra-high field MRI, which
allows one to measure the brain with excellent spatial resolution.
Research using ultra-high field MRI also helps to address the
second issue as it requires a region of interest approach that is
necessarily hypothesis driven.

Our conservative conclusion is, therefore, that neural data
aids model identification under some circumstances. In particular,
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model recovery improved when the latent state was assumed
to consist of discrete stages (vs. continuous dimension). The
discrete approach had greater power in the sense that a given
effect could be identified with smaller sample sizes, reflecting
more efficient use of neural data. This finding may be due to
the parameter governing trial-to-trial variability in drift rate
(η) having a better capacity to compensate for variance arising
from the neural covariate under the assumption of a continuous
dimension than a discrete state representation. Nevertheless, in
practice this finding is particularly important since experiments
that record neural measures such as fMRI or EEG activity during
task completion are often limited in the number of trials that
can be collected. Reassuringly, when the neural data exerted a
large effect on behavior (although not such a large effect as to
be implausible at least in some circumstances) both the discrete
state and continuous dimension representations had good model
recovery. Even under this condition, however, relative to the
standardmodel, the assumption of mutually exclusive latent data-
generating states was more efficiently recovered than a latent
continuous dimension (cf. Fig. 4). Finally, we note that efficiency of
model recovery appears to bemore heavily influenced by the effect
size rather than particular hyperparameter settings (cf. footnote 1).

It is also important to note that even in the large effect size
case simple visual inspection of model fits was not sufficient to
reject the standard model; we required model selection methods.
Fortunately, methods that are easily implemented based on
standard Bayesian posterior sampling (e.g., DIC, WAIC) sufficed
for detecting the presence of an effect of mind wandering in
our simulations. However, more sophisticated model selection
methods (e.g., Bayes factors) appear to be required to provide
consistent evidence (i.e., evidence that becomes stronger as sample
size increases) against the presence of mind wandering. That is,
when mind wandering is not present, at best the model selection
methods explored here will be equivocal even with large samples.

Regardless of whether one expects neural data to exert a
small or large effect on performance, the assumption of a discrete
or continuous representation will likely better serve different
research goals at different times. Both approaches allowestimation
of effect size (cf. formulae (4)–(6)). The continuous approach also
has the attractive property that a measure of effect size is directly
estimated. That is, the output of the neural covariate-model
parameter relationship – a regression coefficient – has a simple
interpretation (assuming that the neural covariate is normalized):
the extent to which the estimated regression coefficient differs
to zero provides a standardized measure of effect size. Both
approaches are also relatively easy to implement. The discrete state
representation can be implemented by splitting an experimental
condition into discrete sets of trials on the basis of a neural variable
(e.g., the output of a classifier). Single-trial covariates are already
incorporated as a standard feature of some estimation programs
(e.g., HDDM, Wiecki et al., 2013), removing a potential barrier to
implementation. In the Appendix, we also provide custom R code
to implement both analysis approaches discussed in this paper.

Our analyses examined recovery of latent cognitive states
in individual (simulated) participants, though one could also
consider recovery of latent states across groups of participants.
This could be investigated with hierarchical Bayesian models
that, among other benefits, allow for simultaneous analysis at
the level of individuals and groups (for an overview, see Lee,
2011). Such an approach allows information to be pooled across
participants in a theoretically sensible manner, which can confer
benefits to parameter estimation, in particular parameter stability.
Furthermore, hierarchical Bayesian modeling can be applied to
large samples of participants, where each participant may only
complete a moderate number of trials. However, it is important
to note that if there are too few data for each participant then
individual differences cannot be estimated, with hierarchical
models often displaying ‘‘over-shrinkage’’ (i.e., estimating the
same parameter value for all participants). For simplicity, we
restricted our analyses to the simpler case of recovering latent
cognitive states in individual participants, which removes at least
some sources of variability that are present in the hierarchical
case (e.g., across-participant variability in the proportion of trials
from each of two discrete latent states). We leave these interesting
questions about model recovery in hierarchical settings to future
research.

Finally, we note that the discrete and continuous approaches
need not involve neural data, although we considered such
hypothetical scenarios here. A variable derived at the level of
single trials – which can be incorporated within a discrete or
continuous approach – can be extracted from any property of the
task environment that is relevant to performance. For example,
Hawkins, Hayes, and Heit (2016) studied the similarity between
study and test items in an inductive reasoning task. The similarity
relations are specified at the level of individual items, and thus can
be regressed against parameters of the cognitivemodel in the same
manner as neural data. In Hawkins et al.’smodel, regressing single-
trial item similarity onto the drift rate parameter led to a positive
regression coefficient, indicating that as item similarity increased
so too did the probability of generalizing a target property to
novel items according to a particular functional form. This example
illustrates the general point thatwider incorporation of single-trial
properties of the experiment – neural or otherwise – in cognitive
models has the potential to provide deeper insight into a broad
range of psychological phenomena.

Appendix. Implementing neurally-informed cognitive models

In this Appendix,we outline the steps involved in implementing
the discrete state and continuous dimension representations
discussed in the main text. To accompany the examples, we
provide code in the R programming language (R Core Team,
2016) that is freely available on the Open Science Framework
(osf.io/yt8q4).

This outline provides guidance on the cognitive modeling
component of a model-based neuroscience analysis in real data. It
assumes that the neural data – whether it is fMRI, EEG, MEG, pupil
measurements, or others – have been analyzed in an appropriate
manner. It further assumes that it is possible to extract at least
one value of the analyzed neural measure for each trial of the
experiment.

A.1. Implementing the discrete state representation

The discrete state representation assumes that the observed
data were generated by two or more discrete latent states. In
the main text, for example, we hypothesized that two latent
states underlying task performance might correspond to an on-
task state, where attention is directed to external stimuli such
as an experimental task, and an off-task state, where attention is
directed to internal stimuli such as mind wandering; these two
states have been proposed in the popular perceptual decoupling
hypothesis of mind wandering (Smallwood & Schooler, 2015).
One could also hypothesize more than two discrete states; for
example, Cheyne et al. (2009) hypothesized a three-state model of
engagement/disengagement from task performance. However, for
simplicity, we restricted the model recovery analyses in the main
text and the outline here to the more prominent two-state case.

The partition of individual trials into the latent states can be
derived fromneural data in twomainways: using singlemeasures,
or multiple measures.

http://osf.io/yt8q4
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A.1.1. Identifying discrete latent states from a single neural measure
Step 1: The first method begins with identification of a neural

signal related to the latent states of interest. In themindwandering
literature, for example, activity of the defaultmodenetwork (DMN)
tends to increase during phases of off-task focus and decrease
during phases of on-task focus (Andrews-Hanna et al., 2010;
Christoff et al., 2009; Mason et al., 2007; Mittner et al., 2014; for
meta-analysis, see Fox et al., 2015). In this case, the neural signal of
interest could be a single-trial measure of DMN activity. The neural
signal of interest can be simple in the sense that it involves a single
measure (e.g., stimulus evoked pupil response, P3 ERP component
over parietal cortex, or BOLD response in dorsolateral prefrontal
cortex) or ‘complex’ in the sense that it involves an amalgamation
of numerous measures (e.g., connectivity between various cortical
regions); the key requirement is that a single value of the neural
signal can be extracted for each trial (methods corresponding to
multiple neural signals on each trial are discussed in the following
subsection). The specifics for obtaining a single value on each trial
might differ depending on the domain of study and the latent
states of interest; it could be the value of the neural signal in a one
second interval during the pre-stimulus period, immediately post-
stimulus presentation, the full time course of a trial, or some other
relevant interval.

Step 2: Once a single value of the neural signal is obtained for
each trial, the individual trials are sorted in order of those with the
lowest value of the neural signal (e.g., low DMN activity) through
to those with the highest value of the neural signal (e.g., high DMN
activity). Once sorted, the trials are split into separate groups. A
simple option is to perform a median split of the DMN activity-
sorted trials on the assumption that trials with lower DMN activity
are more likely to have been generated by the on-task state and
those with higher DMN activity are more likely to have been
generated by the off-task state. A median split is a coarse approach
and other methods can be used; for example, taking the lower
40% and upper 40% of trials, or using signs of bimodality in the
distribution of the neural signal as an indicator of the appropriate
cut point for the sorted trials. The key requirement is that the
neural signal is used to split individual trials into at least two
discrete groups of trials.

Step 3: Once the data have been split based on the neural signal,
the cognitive model is fit to the discrete groups of trials. Critically,
this fitting occurs as if the discrete groups were part of the exper-
imental design. In the main text, for example, we assumed a sin-
gle experimental condition with no explicit manipulation. When
the data were split according to the neural signal, we essentially
created a data set with two conditions that corresponded to the
two latent states; we labeled these ‘on task’ and ‘off task’. When
fitting the model to the latent states one can estimate partially
overlapping or distinct sets of model parameters for the discrete
states. This is the same logic as fitting regular experimental ma-
nipulations: when difficulty is manipulated across conditions the
conventional approach is to freely estimate a drift rate parameter
for each condition while constraining other model parameters to a
common value. In the discrete states case, one might hypothesize
that drift rate differs across states but other parameters do not. This
corresponds to the assumption that the latent states only differ in
the efficiency of stimulus information processing.

The cognitive processes that might differ across latent states
ought to be driven by theory. Ultimately, however, it comes down
to a question of model selection; do processes A and B differ across
latent states, or only process A? Suchmodel comparison allows one
to ask the question: if there are differences in cognitive processes
between the latent states, what is the most likely difference? We
argue that the final and most critical comparison is whether the
simplest model of performance differences across the latent states
is preferred to a model fit to data that is not split according to a
neural signal. The model recovery properties of this comparison
were the primary focus of the main text.

A.1.2. Identifying discrete latent states frommultiple neural measures
The second method differs to the first in terms of the number

of neural signals used to identify the latent cognitive states, and
the complexity of the methods used to infer the latent state. The
first method assumed that the neural signal collapsed to a single
value for each trial. The second method attempts to combine
multiple neural signals to infer the latent generating state on each
trial. The general idea is that each neural signal might contain
independent information about the latent state so simplemethods
of aggregation may lose discriminatory power. A more powerful
form of aggregation is through supervised learning algorithms,
though this places an additional requirement on data collection to
obtain the ‘labels’ to train a classification algorithm.

Step 1: The neural signals are extracted in a similar manner
to Step 1 of Appendix A.1.1. However, here we assume there is a
set of neural signals associated with the latent states of interest;
the states might be on task and off task and the measures might
be regional activity in the DMN and the task positive network,
connectivity between the DMN and the task positive network, and
stimulus evoked pupil diameter (cf. Mittner et al., 2014).

Step 2: The general approach outlined here was performed
in Mittner et al. (2014). This involves collecting neural signals
as identified in Step 1 and behavioral data during regular task
performance that also involves occasional behavioral indicators
of the relevant latent states. In mind wandering research, for
example, participants are periodically asked to report whether
their focus was ‘more on task’ or ‘more off task’ in the preceding
trial, though this is not asked on all trials. This method takes these
self-report ratings as an indicator of the latent state – on task or off
task – and uses them as labels to train a classification algorithm
(e.g., a support-vector machine or neural network classifier) to
‘learn’ the distinct patterns of (the collection of) neural signals
that discriminate on-task from off-task self-report ratings. Most
classification algorithms contain additional tuning parameters that
should be selected in a way that maximizes a predictive score. For
example, leave-one-out cross-validation involves training separate
classifiers on all possible sets ofN−1 trials and trying to predict the
label of the ‘left out’ trial. To avoid a possible over-representation
of one of the classes, which can distort the predictive accuracy
measure (this can happen when, e.g., the criterion is the total
number of correct classifications), the area under the receiver-
operating characteristic curve criterion can be used since it
balances false alarms and misses. After training, the classification
algorithm can be refined to further improve performance on the
selected predictive score (e.g., recursive feature elimination). Once
trained and validated, the algorithm probabilistically classifies all
unlabeled trials to the on-task or off-task state, based on the
correspondence between the neural signals on each unlabeled trial
with the neural signal on the labeled trials.

Step 3: Once individual trials have been classified to the on-task
or off-task states, the cognitive model is fit to the discrete groups
of trials in the same manner as Step 3 of Appendix A.1.1. Typical
classification algorithms used for Step 2 produce not only a latent
state classification, but also a probability of correct assignment to
the state (i.e., pon and poff = 1 − pon). This uncertainty can be
modeled in the likelihood function for each trial’s data as amixture
of the likelihoods of the on-task and off-task states to account for
noise in classification accuracy. Specifically, if the data from trial
i are Di and the likelihood of the set of on-task parameters given
classification to the on-task state for Di is L(θon|Di, on − task), and
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similarly for off task, then:

L(θ |Di) = pon,iL(θon|Di, on − task) + poff ,iL(θoff |Di, off − task).

A.2. Implementing the continuous dimension representation

The continuous dimension representation assumes that the
observed datawere generated by a process that dynamically varies
along a continuous latent dimension, relaxing the assumption that
there are discrete latent states. In the context of mind wandering,
for example, this approach assumes a trial will fall at some point
along a continuum that spans from completely on-task focus
through to completely off-task focus. The position along this latent
continuum dynamically varies throughout the task.

The aim of this method is to regress a single-trial neural signal
onto structured trial-by-trial variation in a model parameter. Here
we outline and provide code to regress a single neural signal
onto a single model parameter. However, the methods can be
easily extended to regress multiple neural signals onto a single
parameter (via multiple regression) or regress multiple neural
signals onto multiple model parameters (via separate simple or
multiple regressions for different model parameters).

Step 1: The neural signal is extracted in an identical manner
to Step 1 of Appendix A.1.1. For the analyses described in
the main text and outlined here, we assume that the neural
signal is normalized to a Gaussian distribution with mean 0 and
standard deviation 1. This permits examination of simple linear
relationships for the mapping between the neural signal and the
model parameter. Other forms of regression that do not assume
simple linear mappings are possible but we do not explore those
here.

Step 2: The hypothesized neural signal-model parameter
mapping is formulated via simple linear regression. For example, in
themain text we explored a covariatemodel thatmapped a single-
trial neural signal to single-trial drift rates (formula (3) of themain
text). Denote the normalized neural signal d, regression coefficient
β , and drift rate v, then the simplest covariate model for drift rate
on trial i is

vi ∼ v + β · di (A.1)

(we also assumed across-trial variability in drift rate in the
covariate model described in formula (3) of the main text, which
is omitted here for simplicity). This mapping assumes that the
drift rate on trial i, vi, has a mean component – the intercept, v,
representing average performance in the condition/experiment –
that is modulated on a trial-by-trial basis by the magnitude and
valence of the neural signal on trial i, di, scaled by a regression
coefficient, β , which is an index of effect size.

The neural signal can theoretically map to any parameter of
the cognitive model of interest. When modulating single-trial
parameter values it is important to ensure that the regression
(A.1) does not allow any single-trial parameter estimates to move
beyond feasible boundaries of the model (e.g., a single-trial value
of the response threshold or non-decision time below 0). This can
be instantiated with a ‘check’ in the parameter estimation routine
that assigns very small likelihood to trials with infeasible single-
trial parameter values, which results in low likelihood for the
corresponding estimate of β . Alternatively the parameter can be
transformed so that it is unbounded.

Step 3: Once the single-trial regression is parameterized,
the cognitive model is fit to the behavioral data. In addition
to other model parameters, this involves estimating parameters
corresponding to the mean component and the regression
coefficient of the linear regression (v and β in (A.1), respectively).
The neural signal (di) is provided with the data. Together, these
three components allow estimation of a unique drift rate for each
trial (vi). The accompanying code provides explicit details how to
compute this step.

In the context of single-trial regression, there is an added in-
terpretational benefit to using a Bayesian approach to parameter
estimation: if the posterior distribution of β does not contain zero
there is likely a significant effect of the neural signal on the model
parameter. Other hypothesis tests are also possible using the pos-
terior distribution, for example, estimation of the Savage–Dickey
Bayes factor. Inference on β is less straightforward using conven-
tional parameter estimationmethods such asmaximum likelihood
estimation, though is still possible.

The extent to which the estimate of the β parameter differs
to 0 gives an estimate of the significance of the neural signal on
the model parameter, and hence cognitive process of interest. For
example, if we regressed single-trial measures of (normalized)
DMNactivity onto drift rate and obtained an estimate ofβ = −0.2,
this indicates that for each unit increase in DMN activity there was
a decrease of 0.2 in drift rate.

As in the discrete state analyses, the cognitive processes that
might be dynamically modulated by a neural signal ought to be
driven by theory. However, again, this comes down to a question
of model selection; does the neural signal have a stronger single-
trial effect on process A or B of themodel? As before, we argue that
themost important comparison is whether themost parsimonious
single-trial regressionmodel is preferred to amodel fit to data that
is not informed by a neural signal. The model recovery properties
of this comparison were the primary focus of the main text.
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