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Abstract

■ The ability to control the occurrence of rewarding and punish-
ing events is crucial for our well-being. Two ways to optimize per-
formance are to follow heuristics like Pavlovian biases to approach
reward and avoid loss or to rely more on slowly accumulated
stimulus–action associations. Although reduced control over out-
comes has been linked to suboptimal decision-making in clinical
conditions associated with learned helplessness, it is unclear how
uncontrollability of the environment is related to the arbitration
between different response strategies. This study directly tested
whether a behavioral manipulation designed to induce learned
helplessness in healthy adults (intermittent loss of control over
feedback in a reinforcement learning task; “yoking”) would mod-
ulate the magnitude of Pavlovian bias and the neurophysiological
signature of cognitive control (frontal midline theta power) in

healthy adults. Using statistical analysis and computational model-
ing of behavioral data and electroencephalographic signals, we
found stronger Pavlovian influences and alterations in frontal theta
activity in the yoked group. However, these effects were not ac-
companied by reduced performance in experimental blocks with
regained control, indicating that our behavioral manipulation was
not potent enough for inducing helplessness and impaired coping
ability with task demands. We conclude that the level of contin-
gency between instrumental choices and rewards/punishments
modulates Pavlovian bias during value-based decision-making,
probably via interfering with the implementation of cognitive con-
trol. These findings might have implications for understanding the
mechanisms underlying helplessness in various psychiatric
conditions. ■

INTRODUCTION

Our value-based decisions are influenced by automatic
preparatory behaviors, such as approach for potential
rewards or response inhibition when facing threat
(Dayan & Berridge, 2014; Dolan & Dayan, 2013; Clark,
Hollon, & Phillips, 2012; Rangel, Camerer, & Montague,
2008). These (in)action tendencies are controlled by the
Pavlovian valuation system and can be extremely bene-
ficial when agents are required to act or suppress their
actions rapidly, without deliberate evaluation of the sit-
uation (e.g., halting before stepping on the road if a fast
vehicle is approaching). However, Pavlovian influences
over instrumental responses can also introduce conflict in
decision-making (e.g., eating a delicious-looking cake
when one is on a diet), hindering participants’ performance
under various circumstances (Swart et al., 2018; Cavanagh,
Eisenberg, Guitart-Masip, Huys, & Frank, 2013; Guitart-
Masip et al., 2012; Huys et al., 2012). In these situations,
Pavlovian bias can either exert synergistic or antagonistic
effects with other valuation systems that control habitual
and goal-directed responding (Dayan & Berridge, 2014).
Decision-making in conflicting situations can be im-

proved via recruiting cognitive control (CC; Alexander

& Brown, 2010; Ridderinkhof, Ullsperger, Crone, &
Nieuwenhuis, 2004). On the neural level, successful con-
trol over Pavlovian bias under conflict has been linked to
theta-band (4–8 Hz) oscillations recorded above the me-
dial pFC with EEG (Swart et al., 2018; Cavanagh & Frank,
2014; Cavanagh et al., 2013). In healthy participants, stron-
ger frontal midline theta (FMθ) activity during decision-
making was accompanied by weaker Pavlovian bias and
more accurate responding both between and within sub-
jects (Swart et al., 2018; Cavanagh et al., 2013). Thus, as a
neural signature of CC, FMθ can be informative on the trial-
by-trial variability of top–down inhibition of Pavlovian re-
sponse tendencies and hence on the balance between
Pavlovian versus instrumental (habitual and goal-directed)
controllers.

Maladaptive value-based decision-making is a key feature
of clinical conditions such as major depression (Chen,
Takahashi, Nakagawa, Inoue, & Kusumi, 2015; Eshel &
Roiser, 2010). Several streams of evidence point toward
suboptimal Pavlovian influences over instrumental choices
in states with depressed mood and/or increased anxiety
levels. For example, healthy adults with mild depressive
symptoms (Huys et al., 2012), those undergoing experi-
mentally induced acute stress (de Berker et al., 2016), or
survivors of a severe traumatic event (Ousdal et al., 2018)
showed more intensive Pavlovian bias across differentUiT The Arctic University of Norway

© 2019 Massachusetts Institute of Technology Journal of Cognitive Neuroscience X:Y, pp. 1–18
https://doi.org/10.1162/jocn_a_01515



experimental settings, whereas the action specificity of
Pavlovian influences was found to be attenuated in patients
diagnosed with major depression (Huys et al., 2016).
Although alterations in Pavlovian bias in these conditions
might be related to inefficient CC, to our knowledge, direct
evidence for this notion is missing.

Learned helplessness (LH) is a characteristic behavioral
response first described in rodents: After receiving uncon-
trollable painful shocks, animals showed motor passivity
and compromised coping ability in aversive situations
(Maier & Seligman, 1976, 2016). The concept of LH has
been linked to cognitive and affective symptoms of de-
pression (Diener, 2013; Pryce et al., 2011). Originally, it
was proposed that during LH induction (“yoking,” an ex-
perimental protocol in which an animal receives identical
shocks as a paired control but without being able to con-
trol them), what animals learn is the noncontingency be-
tween their responses and stressful events. The resulting
emotional-cognitive state is being transferred to new situ-
ations, causing anxiety, reduced motivation, cognitive
deficits, and ultimately, impaired coping behavior (Pryce
et al., 2011; Maier & Seligman, 1976). However, Maier
and Seligman (2016) recently proposed that helplessness
is not really learned; rather, the LH response might belong
to the animals’ behavioral repertoire for responding to
aversive events. Based on this new theoretical framework,
animals with control over environmental stimuli can over-
ride helplessness by recruiting CC mechanisms arising
from medial prefrontal areas. Thus, “being in control” is
actually the crucial information that animals learn,
whereas helplessness can be regarded as an innate
and automatic response. This reformulation of helpless-
ness resembles a special case of Pavlovian bias called
“punishment-based suppression” (PBS). Both LH and
PBS are (1) elicited by aversive stimuli, (2) dominated by
motor inhibition, and (3) associated with altered seroto-
ninergic signaling (Maier & Seligman, 2016; Dayan &
Berridge, 2014; Guitart-Masip, Duzel, Dolan, & Dayan,
2014; Clark et al., 2012).

Based on the similarities between LH and Pavlovian
bias in action selection, we sought to determine if the in-
termittent absence of control over outcomes (yoking) in
a reinforcement learning (RL) task would induce a state
resembling helplessness in healthy adults. Specifically, we
anticipated that yoking would enhance Pavlovian bias
over performance and weaken CC (indexed by FMθ) dur-
ing decision-making.

METHODS

Participants

Forty-six healthy adults were randomized to two experi-
mental groups (n = 23 in each; control group: 14 female,
age (M ± SD): 24.1 ± 4.6 years, 20 right-handed; yoked
group: 12 female, age: 23.7 ± 2.6 years, 22 right-handed).
The two groups did not differ in age (BF01 = 3.33), sex

(BF01 = 3.03), handedness (BF01 = 2.22), or other basic
personality and affective-cognitive characteristics
(Table 1). Randomization was performed in a double-
blind manner, so that the experimenter (E. M.) was
unaware of group membership. All participants met our
inclusion criteria (age ≥ 18 years, no history of psychiatric
or neurological conditions based on self-report, not un-
der the influence of psychotropic agents or drugs modu-
lating activity of the CNS, good or corrected eyesight,
sufficient sleep in the preceding night). Participants were
informed to receive gift cards worth 100 NOK (approxi-
mately equal to 11.7 USD) upon successful completion of
the experiment, with the possibility of receiving a bonus
of the same amount if their task performance exceeds a
predefined threshold (not specified in the information
sheet). Eventually, all participants received the bonus
and were told that their performance was satisfactory.
All participants provided written consent before the start
of data collection. The detailed study protocol was ap-
proved by the Institutional Ethics Committee of the
Department of Psychology, UiT The Arctic University of
Norway, and complied with the Declaration of Helsinki.
Study materials and data are available at https://osf.io/
89mdr.

Experimental Design

Data collection was scheduled for two different days, sepa-
rated by a minimum of 1 day and a maximum of 12 days.
On Day 1, they first signed the informed consent and then
completed the Norwegian versions of the Positive and
Negative Affect Schedule (PANAS) asking about their mood
in the past 30 days (PANAS-Past; Gullhaugen & Nøttestad,
2012; Watson, Clark, & Tellegen, 1988), the Behavioral
Inhibition System/Behavioral Approach System (BIS/BAS)
scales (Brunborg, Johnsen, Mentzoni, Molde, & Pallesen,
2011; Carver & White, 1994), and the Beck Hopelessness
Scale (BHS; Hjemdal, Friborg, & Stiles, 2012; Beck,
Weissman, Lester, & Trexler, 1974). The PANAS consists
of 20 statements describing affective states, organized into
two subscales (PANAS-Positive and PANAS-Negative). The
BIS/BAS measures personality attitudes toward approach
versus avoidance behavior in appetitive and aversive situa-
tions, respectively. Although BIS is regarded to be a unitary
concept, BAS scores are divided into three subscales, the
BAS-Drive, BAS-Fun Seeking, and BAS-Reward Responsive-
ness. The BHS assesses people’s tendency to become or feel
hopeless in certain real-life situations, with scores be-
tween 0 and 20. Hopelessness is a psychological construct
closely related both to helplessness and the pathogenesis
of major depressive disorder (Pryce et al., 2011). Data for
the BHS were not collected for two control participants.
Following the three questionnaires, participants were

asked to read carefully the instructions about our RL task,
perform a short practice session (consisting of 20 trials
in total), and complete one “baseline” block of the task
(80 trials in total) with the standard response–feedback
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contingency of 70–30% for correct/incorrect responses
(task difficulty was set to be identical as in Cavanagh
et al., 2013). At the end of the task, participants were
shown two visual analogue scales to rate between 0
and 100 the degree to which they felt they were success-
ful during the task in obtaining as many points as possible
(success score) and how much they think they could con-
trol the outcomes by choosing the appropriate response
at each trial (control score).
Finally, to ensure similar levels of working memory

capacity and executive functioning between groups, par-
ticipants performed the operation span task (Turner &
Engle, 1989) and the phonemic fluency task with letters
F, A, and S (Ruff, Light, Parker, & Levin, 1997). The flu-
ency score was not collected for one yoked participant.
Data collection on Day 1 lasted for 1–1.5 hr with short
breaks between the tests.

On Day 2, participants were asked to complete the
PANAS, but now focusing on their affect states at the mo-
ment (PANAS-Present, Pretask). After setting up the EEG
for recording, participants completed a short practice
block (20 trials) and started the long version of the task,
consisting of nine experimental blocks (720 trials in total:
4 cards × 20 repetitions × 9 blocks). This was followed by
registering success and control ratings, and the session
ended with the repeated collection of PANAS scores
(PANAS-Present, Posttask). The whole procedure on Day 2
lasted for 2–2.5 hr.

RL Task and Yoking Procedure

We used a modified version of the orthogonalized Go/
NoGo task that was specifically designed to investigate
the neural correlates of Pavlovian bias (and the control

Table 1. Descriptives and Statistical Results for the Comparison of Data from Questionnaires and Cognitive Tests between the
Two Groups and the Two Assessments

Baseline Measures
PANAS-Past
Positive

PANAS-Past
Negative BAS-Drive

BAS-Fun
Seeking

BAS-Reward
Resp. BIS BHS OSPAN Fluency

Control

Mean 32.95 17.91 9.91 11.39 16.17 18.78 2.85 11.65 54.26

SD 5.85 6.95 2.10 1.97 2.22 5.24 2.81 2.96 12.41

Yoked

Mean 35.69 16.87 9.91 12.00 16.78 19.52 2.69 12.04 49.22

SD 4.44 4.14 2.08 2.15 2.02 3.64 2.03 2.44 13.37

BF01 Group 0.96 2.94 3.44 2.27 2.32 3.03 3.33 3.12 1.69

Repeated Measures

PANAS-Present Positive PANAS-Present Negative Success Score Control Score

Pre Post Pre Post Day 1 Day 2 Day 1 Day 2

Control

Mean 32.26 28.27 12.17 11.13 48.00 60.48 52.39 57.57

SD 5.46 8.26 2.22 1.76 19.59 11.86 18.38 15.39

Yoked

Mean 32.78 30.74 12.17 11.83 56.48 65.13 59.87 61.57

SD 6.08 7.95 2.74 3.07 21.00 12.48 14.79 11.65

BF01 Group 2.08 3.12 1.33 1.26

BF01 Time 0.01 1.51 0.02 2.08

BF01 Group×Time 1.75 2.38 2.85 2.77

BAS-Reward Resp. = BAS-Reward Responsiveness; OSPAN = operation span task.
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thereof ) during instrumental learning and value-based
decision-making (Cavanagh et al., 2013; Guitart-Masip
et al., 2012). Custom-made cards containing characters
(letters) and colored symbols served as cue stimuli
(Figure 1A). Participants were told that they were about
to play a card game in which four cards would be pre-
sented in a random order during each of the experimen-
tal blocks. Their task was to maximize their earned points
by the end of the game by finding out, via trial and error,
which card should be “picked up” by pressing the space
bar with their dominant hand and which card should be
left untouched by remaining passive. Participants were
told that (1) some cards were “winning” and some were
“losing,” (2) there were cards with favorable outcomes
following a response and cards associated with no re-
sponse, (3) these characteristics for each card remained
constant for the duration of the experimental block, (4)
there was no relationship between cards belonging to dif-
ferent blocks, (5) the task was difficult because feedback
was probabilistic and thus there were infrequently pre-
sented misleading outcomes as well (probability levels
not told explicitly), (6) so participants were encouraged

to explore both response options for all cards on multiple
trials, and (7) all outcomes were numerically smaller if
they were preceded by an active response relative to re-
maining passive (i.e., there was a small “Go-cost” of re-
sponding, which would reduce wins, modify neutral
outcomes, and increase losses by −1 points). We in-
formed the participants that the Go-cost resembled the
effort of exploring by action, mimicking real-life situa-
tions (Teodorescu & Erev, 2014). By introducing the
Go-cost, our aim was to promote tendencies of remain-
ing inactive in the yoked group, since behavioral passivity
and reduced exploratory behavior are central features of
helplessness (Maier & Seligman, 1976, 2016; Teodorescu
& Erev, 2014).
Each block contained a new set of cards, and there was

no relationship between the card sets (i.e., participants
had to start learning again at the start of each block).
Cards sets were assigned randomly to the nine experi-
mental blocks. To emphasize the distinction between
card sets and blocks, cards within each card set contained
the same unique combination of a symbol (circle, dia-
mond, square, or star) and color (yellow, rose, blue,

Figure 1. Overview of the behavioral task. (A) In each experimental block, participants were presented with four cards, differing in their action
requirement (Go vs. NoGo) and in their associated outcomes (reward vs. loss). Feedback was probabilistic (70–30%); rewards and losses were
defined as 10 and −10 points, respectively, but outcomes following an active response were penalized by a Go-cost (−1 points). Action
requirements were congruent with the Pavlovian system for two card types (Go-to-Win, NoGo-to-Avoid), whereas two cards (NoGo-to-Win,
Go-to-Avoid) induced Pavlovian conflict. (B) In each trial, participants were asked to make decisions about their actions during card presentation, but
to make responses only for the response screen (question mark). Feedback was shown after a short delay. (C) On Day 1 (Block 0: baseline), all
participants completed one “normal” block of the task, with probabilistic feedback contingent on their responses. On induction blocks (1, 4, 7) of
Day 2, yoked participants received random feedback matched to their control pair, that is, outcomes recorded previously for the same block
and card type in a control participant. Other (main) blocks (2, 3, 5, 6, 8, 9) were identical between the two groups, with behavioral control over
feedback upon successful learning.
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green, and orange). Importantly, each card contained a
unique character that was not used in other experimental
blocks (44 characters in total, all being letters from the
alphabet, including special characters from Norwegian,
German, Hungarian, and Serbian: four characters for
the practice, four characters for the “baseline” block on
Day 1, and 9 blocks × 4 characters for the EEG session
on Day 2). Except for the practice session, cards in each
block were shown 20 times, yielding a total of 80 trials
per block.
In each block, the four cards within each card set were

randomly assigned to one of our four experimental con-
ditions: “Go-to-Win,” “NoGo-to-Avoid,” “Go-to-Avoid,”
and “NoGo-to-Win” (Figure 1A). For winning cards, our
participants’ aim was to collect points and avoid the
absence of winning, whereas for avoid cards, they had
to avoid losing points by obtaining neutral outcomes (0
or −1 points, depending on Go-cost). Given that the
Pavlovian system promotes approach toward potential re-
wards and inhibits response tendencies for stimuli asso-
ciated with losses, the “Go-to-Win” and “NoGo-to-Avoid”
conditions are congruent with the Pavlovian system,
whereas “Go-to-Avoid” and “NoGo-to-Win” cards induce
Pavlovian conflict.
Participants sat in a darkened, sound-shielded room, in

front of a 19-in. Sony Trinitron CRT monitor with a view-
ing distance of approximately 57 cm and a refresh rate of
100 Hz. Stimuli were presented, and responses were re-
corded with PsychoPy 1.83.04 (Peirce, 2007). Each trial
started with a fixation sign (1° × 1° of visual angle)
presented at the center of the screen for a duration of
1–1.5 sec, followed by the cue (card) presentation (7.8° ×
12.8°) for 1 sec (Figure 1B). Participants were told that the
script would register responses only during the 1-sec long
presentation of the response screen containing a question
mark (3.5° × 5.5°) that would appear after cue offset, so they
should refrain from responding directly to the cues. The re-
sponse screen was followed by a delay period (1–1.25 sec)
with the fixation sign, and the trial ended with the presenta-
tion of a feedback screen (1 sec) depicting the numerical
value of the outcome (3.5–10° × 5.5°). Outcomes could
be rewards (10 or 9 points), neutral values (0 or−1 points),
or losses (−10 or−11 points), depending on the presence/
absence of the Go-cost. Outcomes were probabilistic with
a response–feedback contingency of 70–30%, so that cor-
rect (incorrect) responses were followed by the favorable
(unfavorable) outcome in 70% of the trials, whereas feed-
back was misleading in the remaining 30%.
We aimed to induce helplessness in the yoked group by

manipulating action–outcome contingency in Induction
Blocks 1, 4, and 7 of Day 2 (Figure 1C). Unbeknown to
the participants, each yoked participant was paired with
one member of the control group, making sure that data
of the control pair was collected first. During induction
blocks, yoked participants received random feedback (re-
ward, neutral, loss) recorded earlier for their control pair,
saved separately for each specific card in these blocks.

However, the outcomes were not necessarily identical be-
tween pair members, as the Go-cost was applied for each
participant and trial individually. In other words, a feed-
back for a control participant for a given Go-to-Win trial
could be 9 points following a Go response (10 points of
reward minus 1 point of Go-cost), whereas the corre-
sponding yoked pair could receive 10 points if no button
press was made for the same trial. This experimental de-
sign enabled that the net outcome for control and yoked
participants during induction blocks was numerically al-
most identical and that it was only the uncontrollability
of feedback (rather than the prevalence of favorable vs.
unfavorable outcomes) that distinguished between the
two groups. This aspect of our setup closely resembled
the one used in the seminal animal studies of LH, enabling
to assess the impact of noncontingency between actions
and outcomes on behavior and neural activity (Maier &
Seligman, 1976, 2016; Pryce et al., 2011).

Analysis of Behavioral Data

Response accuracy was calculated for each participant,
experimental block, and card type separately. In induc-
tion blocks, accuracy was defined as the proportion of
“correct” responses, taking into account the arbitrary as-
signment of cards to one of the four card types. Based on
previous work, we also determined two measures of
Pavlovian performance bias (PPB): Reward-based invigo-
ration (RBI) was quantified as the number of Go re-
sponses on win trials/total number of Go, whereas PBS
was calculated as the number of NoGo responses on
avoid trials/total number of NoGo. These indices quantify
the participants’ likelihood to produce Go (RBI) or NoGo
(PBS) responses only for cues associated with reward
and punishment, respectively (Cavanagh et al., 2013).
Although usually averaged to estimate the overall mag-
nitude of PPB during the task, we analyzed the RBI and
the PBS separately, because we assumed a closer corre-
spondence between PBS and LH. We also calculated the
number of Go responses (NumGo) for each experimental
block, separately for Pavlovian congruent (Go-to-Win,
NoGo-to-Avoid) and conflict (Go-to-Avoid, NoGo-to-
Win) cards to assess if our yoking procedure induced
behavioral passivity in yoked participants. Finally, we ex-
tracted the total amount of earned points for every block
to compare task performance between the two groups
more directly. Accuracy, PPB values, NumGo, and total
scores were entered into the Bayesian repeated-measures
ANOVA function of JASP 0.9.2 (JASP Team, 2018), which
implements the Bayesian linear mixed-effects model of
the BayesFactor package in R (Morey, Rouder, & Jamil,
2015). For all behavioral measures, block (1–9) was used
as within-subject facto and group (control vs. yoked) was
used as between-subject factor, with additional within-
subject factors of valence (win vs. avoid cards; for accu-
racy), congruency (Pavlovian congruent vs. conflict; for
accuracy and NumGo), and index (RBI vs. PBS; for PPB).
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In contrast to conventional null hypothesis significance
testing, Bayesian statistics enabled the estimation of evi-
dence favoring either the alternative (BF10 > 3) or the null
hypothesis (BF01 > 3). Interactions were assessed using a
Bayes factor (BFinclusion) that compares models containing
the interaction versus equivalent models without the
interaction term. All Bayesian analyses were performed
using default prior scales (r scale fixed effects: 0.5; r scale
random effects: 1).

EEG Recording and Analysis

EEG was recorded at 1000 Hz from 33 channels using a
QuickAmp system and actiCAP Ag/AgCl electrodes (Brain
Products GmbH), without online frequency filters. Thirty-
two electrodes were placed on the scalp in an equidistant
arrangement, two electrodes under and above the left eye
to record vertical EOG (in a bipolar montage), whereas the
ground and reference electrodes were positioned at loca-
tions AFz and FCz, respectively. Data were preprocessed
with BrainVision Analyzer 2.1.2 (Brain Products GmbH).
First, EEG was high-pass filtered at 0.5 Hz (zero phase shift
Butterworth filter, order = 4), followed by ICA-based re-
moval of artifacts related to vertical eye movements.
Cue-locked epochs were extracted starting at 1000 msec
before and 2000 msec after stimulus onset. Data were
baseline corrected (from −100 to 0 msec) and epochs
containing artifacts related to eye movements, muscle ac-
tivity, or other noncerebral sources were removed in a
semiautomatic manner combining automatic artifact de-
tection (gradient threshold: 50 μV/msec; amplitude cri-
teria: below −100 μV and above 100 μV; low activity
criterion: 0.5 μV/100 msec) and visual inspection of the
data. Subsequently, data were re-referenced to the average
of mastoids, a frontocentral pooled channel was created
from data of four channels (Fz, Cz, FC1, FC2), and epochs
containing a blink marker between 0 and 500 msec were
also removed to ensure that stimulus processing in this
time interval was not influenced by disruptions in visual
input.

We applied three strategies to analyze modulations in
cue-locked FMθ between groups and experimental condi-
tions. First, we measured condition-averaged FMθ in an
a priori defined scalp region, time interval, and frequency
range (Cavanagh et al., 2013). Following time–frequency
transformation of segmented data using continuous com-
plex Morlet wavelets (from 1 to 30 Hz in 30 linear-spaced
frequency steps, Morlet parameter c= 3, baseline correc-
tion between −300 and −200 msec), data were averaged
separately for the four trial types (Go-to-Win, NoGo-to-
Avoid, Go-to-Avoid, NoGo-to-Win) and two block types
(main and induction). FMθ power was extracted from
our frontocentral pooled channel for each participant
between 175–350 msec and 4–8 Hz (the mean of three
wavelet layers with central frequencies at 5.17, 5.81,
and 6.53 Hz, respectively). These FMθ power values were
analyzed using Bayesian repeated-measures ANOVA:

Block type (main vs. induction), valence of the trial
(win vs. avoid), and congruency (congruent vs. conflict)
were entered as within-subject factors, and group (con-
trol vs. yoked) was entered as between-subject factor.
To assess if conflict-related modulations in oscillatory

brain activity were restricted to the theta band (4–8 Hz)
above frontocentral scalp sites in the 175–350 msec time
interval, we analyzed our data across all scalp electrodes
and in a wider time–frequency range. For this data-driven
approach, we down-sampled the data to 250 Hz and
entered it into the study structure of EEGLab v14.1.2
(Delorme & Makeig, 2004) in Matlab R2018b (The
MathWorks). Between-group (control vs. yoked) and
between-condition (Pavlovian congruent vs. conflict)
modulations in event-related spectral perturbation were
analyzed separately for data corresponding to main and
induction blocks. Event-related spectral perturbation de-
composition was performed with Hanning-tapered sinu-
soidal wavelets starting with three cycles at 3 Hz and
increasing in 48 log-spaced frequency steps to 10 cycles
at 50 Hz, with baseline correction between −300 and
−200 msec. We used permutation-based 2 × 2 ANOVA
(1000 permutations, false discovery rate [FDR] method
to control for multiple comparisons, p < .05) to assess
(1) frontocentral effects in the 3–12 Hz frequency range
up until 450 msec and (2) scalp-wide effects in our time–
frequency cluster of interest.
Finally, we extracted single-trial FMθ power for all

artifact-free trials and used these values in our model-
based approach (see Computational Modeling section)
to investigate how variations in FMθ are related to our
Pavlovian bias parameter (π) between experimental
groups (control vs. yoked) and block types (main vs.
induction).

Computational Modeling

To evaluate if yoking influenced latent parameters of RL
and decision-making, we implemented three computa-
tional models of increasing complexity (M1–M3) to our
behavioral data. Our primary interest was to look for po-
tential group differences in the temporal evolution of the
Pavlovian bias parameter π and to assess if single-trial
modulations in FMθ would be related to the magnitude
of Pavlovian bias over action selection on the same trial
(theta-scaling parameter; ω). In addition, we extracted
parameters representing block-wise modulations in the
randomness of choice (temperature; β), learning rate
(α), and the general tendency to initiate actions (Go bias;
b). We chose to fit these parameters to each block sepa-
rately (in a hierarchically constrained manner) because
we speculated that our yoking manipulation would inter-
fere with other latent processes of learning and decision-
making. Specifically, it has been shown that healthy
participants can dynamically adjust their learning rates
to the volatility of the environment (Behrens, Woolrich,
Walton, & Rushworth, 2007), and changes of similar
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nature were anticipated for choice randomness and Go
bias in the yoked group (Teodorescu & Erev, 2014).
The decision about which action (either “Go” or “NoGo”)

subject i picks in trial t of block jwhen stimulus st (one of the
four possible cards) is presented is made by a Bernoulli
experiment with probabilities p(Go) and p(NoGo) = 1 −
p(Go). These probabilities are calculated as

p Gojst; j; i
� �
¼ exp Wt Gojst; j; i

� �
=βj; i

� �
exp Wt Gojst; j; i

� �
=βj; i

� �þ exp Wt NoGojst; j; i
� �

=βj; i

� �
(1)

that is, a softmax function based on the “weight”Wt of each
action. The probability is therefore dependent on the rela-
tive weight of the possible actions (Go vs. NoGo) as well
as the temperature parameter βj,i of subject i in block j.
This parameter, controlling the exploration–exploitation
tradeoff, determines how rigid the decisions are biased
in favor of the higher weighted option.
The response weights Wt are functions of the accumu-

lated Q values based on the past reinforcement history of
the stimulus. For a given, learned stimulus value Qt,

Wt ajst; j; i
� �
¼

Qt Gojst; j; i
� �þ bj; i þ πj; iV st; j; i

� �
if a ¼ Go

Qt NoGojst; j; i
� �

if a ¼ NoGo:

(

(2)

Here, a is either Go or NoGo, parameter bj,i codes for a
general bias for or against Go responses, and πj,i is the
Pavlovian bias parameter that captures the effect of pre-
vious reinforcement history of a stimulus V(st, j,i), inde-
pendent of the actions that were taken. This parameter
has previously been shown to be important for the para-
digm employed in our study (Swart et al., 2018; Cavanagh
et al., 2013). The reinforcement history of stimulus st, j,i
is cumulated (learned) in a value representation V(st, j,i)
for that stimulus

V st; j; i
� � ¼ Vt−1 st; j; i

� �þ αj; i rt; i; j −Vt−1 st; j;i
� �� �� (3)

where αj,i is the learning rate and rt, j, i is the reward
(feedback) obtained in trial t. According to the experi-
mental protocol, the feedback is a combination of a re-
ward or punishment of 10 or −10 points plus a small
cost of −1 for Go choices. These action outcomes are
presented probabilistically, depending on choice accu-
racy (active response for Go cards and passivity in NoGo
trials). Thus, rt, j,i can be one of the following values:
{−11, −10, −1, 0, 9, 10}. This implies that for stimuli that
are appetitive (associated with reward) the decision made
on the basis of the weightsWt(a|st, j,i) will be biased toward
Go responses, whereas it will bias behavior to passivity
(NoGo) when the stimulus is aversive (associated with

punishment or loss of reward), given the Pavlovian bias pa-
rameter π is positive. The final bit of the model is a standard
Q-learning mechanism where stimulus/action pairs receive
a value Qt(a|st, j,i) that is updated to the standard rule

Qt ajst; j; i
� � ¼ Qt−1 ajst; j; i

� �
þα j; i rt; j;i −Qt−1 ajst; j; i

� �� ��:
(4)

At the start of each block j, the Q values are initialized to 0
for all action/card pairs, which implies a random choice
(Go/NoGo) for each card at the first trial.

We model the data from all subjects and sessions in the
framework of hierarchical Bayesian modeling. We refer the
reader to the study of Gelman et al. (2013) for in-depth
coverage of the advantages of this approach. In this setup,
we model each subject’s parameters in the baseline block
βi, αi, bi, and πi as coming from a group-level distribution
with means μβ, μα, μb, and μπ and standard deviations σβ,
σα, σb, and σπ. All subjects took part in a baseline session
(block j = 1) of our task on Day 1, under identical condi-
tions (i.e., no yoking for the yoked group). We therefore
model all subject-specific parameters in the first block as
coming from the same group-level distribution. We follow
the approach taken by Ahn, Haines, and Zhang (2017),
who model all group-level parameters as coming from a
normal distribution with unit information prior and trans-
form the samples to the respective range of the subject-
level parameters. Therefore,

Φ−1 αj; i
� �

∼N μα;σαð Þ (5)

where Φ−1 is the inverse standard cumulative normal
density function,

log βj; i∼N μβ;σβ

� �
; (6)

πj; i∼N μπ;σπð Þ (7)

and

bj; i∼N μb;σbð Þ: (8)

To account for changes across experimental blocks j, we
allow all group-level parameters to depend on the block
parameter and group membership g such that

μα ¼ μα0
þ α g; j

1 (9)

μβ ¼ μβ0
þ βg; j

1 (10)

μπ ¼ μπ0 þ π g; j
1 (11)

μb ¼ μb0 þ bg; j
1 (12)
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where g indicates group (control vs. yoked) and j is the
block. The block-level parameters for the first block are
set to zero because they constitute the baseline. In an
exploratory analysis, we wanted to quantify whether the
observed by-block changes of the four parameters α, β,
b, and π were different between the groups. We
observed near-linear changes in the parameters and
therefore opted for linearly constraining the block effects
in the following way.

μα ¼ μα0
þ αg

lin j (13)

μβ ¼ μβ0
þ βg

lin j (14)

μπ ¼ μπ0 þ πglin j (15)

μb ¼ μb0 þ bglin j (16)

Instead of estimating separate parameters ξg; j1 with ξ 2 {α,
β, π, b} for each of the nine nonbaseline blocks, we only
estimate a single block parameter ξglin per group for each
of the four parameters that describes the per-block
changes. We refit the unconstrained model four times,
each time constraining one of the four parameters as
in Equations (13)–(16) and calculate the posterior mean
and highest density interval (HDI) of the difference be-

tween the groups, that is, ξcontrollin − ξyokedlin .
Finally, we investigate trial-by-trial variations of the

Pavlovian bias with the single-trial estimate of theta
power θi, j, t extracted from each individual’s EEG data
by adding it as a covariate to the Pavlovian parameter π
in conflict trials only

Wt ajst; j;i
� �

¼
Qt Gojst; j;i
� �þ bj;i þ πj;i þ ωiθt; j;i

� �
V st; j;i
� �

if a ¼ Go and conflict

Qt NoGojst; j;i
� �

if a ¼ NoGo:

8><
>:

(17)

This parameter ωi is modeled similarly as the other
group-level parameters such that

ωi∼N μω0
þ ωinduction � induction;σω0

� �
(18)

where we added a separate term ωinduction that is in-
tended to capture deviations of the parameter during in-
duction (Blocks 1, 4 and 7). Here, the dummy variable
induction is 1 whenever an induction block is presented
(in the yoked group, only) and 0 otherwise. Similarly to
Cavanagh et al. (2013), we sigmoid-transformed the stan-
dardized theta estimates, such that the used θi, j,t values
were

θt; j;i ¼ 2

1þ exp
θrawt; j; i− θrawt; j; ih i

t j

SD θrawt; j; ið Þ
t j

� � −1 (19)

where mean and standard deviation of the raw theta
values were calculated for each subject (across blocks t
and sessions j). Missing values were imputed as the me-
dian of the remaining theta values for this subject and
block.
The intercepts of the group-level model received the

following prior distributions:

μα0
∼N −0:4; 0:7ð Þ; σα∼HalfCauchy 0; 0:02ð Þ (20)

μβ0
∼N −1:5; 0:8ð Þ; σβ∼HalfCauchy 0; 0:1ð Þ (21)

μπ0 ∼N 0; 1ð Þ; σπ∼HalfNormal 0; 1ð Þ (22)

μb0 ∼N 0; 1ð Þ; σb∼HalfNormal 0; 1ð Þ (23)

μω0
∼N 0; 1ð Þ; σω∼HalfNormal 0; 1ð Þ: (24)

All the block-level variables ξg; j1 where ξ 2 {α, β, π, b, ω}
and ωinduction, received unit information priors ξg; j1 ∼N (0,
1). These prior distributions were picked such that the
implied prior on the subject-level parameters was in a
reasonable range informed by previous studies.
All models were implemented using Hamiltonian Monte

Carlo algorithms (Hoffman & Gelman, 2014) implemented
in Stan (Carpenter et al., 2017). We used six parallel chains
with warm-up period of 1000 samples each such that 6000
samples were drawn from the converged chains. Trace
plots for all variables were manually screened for conver-
gence. In addition, we calculated the Gelman–Rubin diag-
nostic (Gelman & Rubin, 1992) to ensure that all R̂ ≤ 1.05.
We used the Watanabe–Akaike information criterion
(WAIC) for model selection (Watanabe, 2013). WAIC dif-
ferences larger than 10 can be considered strong (Pratte &
Rouder, 2012).
Based on previous work (Swart et al., 2018; Cavanagh

et al., 2013), we implemented three models of increasing
complexity. The first model (M1) did not differentiate

between the groups, such that ξcontrol; j1 = ξyoked; j1 for all
parameters ξ and blocks j and did not implement any theta-
specific effects on the Pavlovian bias, ωi = 0. The second
model (M2) differentiated between the two groups but still
left ωi = 0, and the third model (M3) implemented the full
architecture described above. A model selection procedure
showed that the second model (WAIC = 38496.7), imple-
menting group differences, was superior to M1 (WAIC =
38526.3), ΔWAIC = 14.8 (SE = 29.7). Furthermore, M3
(WAIC = 38486.5) implementing the neural covariate was
superior to the other two, ΔWAIC = 5.1 (SE = 5.2). We
report parameter estimates from the final model imple-
menting all components.
Posterior predictive distributions were calculated

from the final model by randomly drawing nrep =
1000 samples for the parameters from the subject-
level variables from the posterior distribution and
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generating artificial data sets according to these pa-
rameter values. Each of these 1000 data sets was then
summarized in the same way as the real data, that is,
p(Go) was calculated by summing all Go responses
and dividing by the number of subjects. The resulting
distribution of p(Go) values was then summarized by
their mean and 5% quantiles.

RESULTS

Yoking Enhances the Impact of Pavlovian Bias on
Choice Behavior

On Day 1 (baseline session), we found strong evidence
indicating more correct responses in Pavlovian congruent
trials (main effect of congruency: BF10 = 10459.10).
There was also an interaction with valence (BF10 =
64.19) suggesting that participants showed stronger
Pavlovian bias for win cards (more correct responses in
Go-to-Win relative to NoGo-to-Win trials; Figure 2A).
Importantly, the main effect of group (BF01 = 3.03)
and all interactions containing this factor (BF01 > 1.69)
pointed toward similar baseline performance in the two
experimental groups. With respect to our two PPB
parameters (RBI and PBS), we found strong evidence
for higher PBS versus RBI scores (BF10 = 175.63; PBS
[M ± SD]: 0.61 ± 0.16; RBI: 0.56 ± 0.10). Again, we
did not find group differences (BF01 Group = 1.75; BF01
Group×Index = 3.44), indicating uniform motivational bias
in our cohort. The two groups produced comparable
amount of Go responses (BF01 = 4.54), and although
controls earned more points (control group: 15.52 ±
65.11; yoked group: −5.91 ± 62.41), statistical assess-
ment was inconclusive for this measure and pointing
toward an absence of an effect (BF01 = 2.04).
On Day 2 (EEG session), participants completed the

long version of our task (nine blocks consisting of 720
trials). Crucially, we aimed at inducing a state resembling
helplessness in the yoked group by withdrawing control
over action outcomes in three induction blocks (1, 4, and
7). As for the subjective ratings about the perceived level
of success that were collected on both experimental days,
we found higher scores on Day 2, indicating that partic-
ipants were more satisfied with their performance after
nine blocks of the card game relative to their responses
after the single baseline block (Table 1). There was no
difference in the levels of perceived control between rat-
ings obtained on the 2 days. Importantly, neither success
nor control scores differed between groups, nor was there
an interaction between group and session in this respect.
This result was surprising as we expected that the yoked
group would rate their levels of success and control lower
after the second session. However, considering that, dur-
ing induction, yoked participants received feedback col-
lected from their control pair that—depending on the
control pair’s performance—could result in a high number
of favorable (“reward” and “no loss”) outcomes, the

comparable success and control ratings of the two groups
is perhaps more understandable. In line with this result,
other studies also reported that behavioral signatures of
helplessness are not correlated with healthy individuals’
perceived control over the environment (Teodorescu &
Erev, 2014) and that relatively high reward probabilities
can create the “illusion of control” despite the absence
of a causal relationship between actions and outcomes
(Ly, Wang, Bhanji, & Delgado, 2019). The two groups
did not differ in their positive and negative mood scores
either, with both groups reporting lower positive affect at
the end of the second session, probably due to the long
and demanding nature of the task.

Despite our hypothesis regarding reduced response
accuracy for the yoked group, their performance de-
teriorated only during the yoked blocks. Given the
noncontingency between responses and feedback,
accuracy in these blocks was around chance level, re-
sulting in a very strong main effect of block (BF10 =
45344.46) and moderate evidence for a Block ×
Group interaction (BF10 = 3.11). In addition, we ob-
served a three-way Congruency × Valence × Group in-
teraction (BF10 = 38.48), which was due to the
surprising low overall accuracy of control participants to
rewarding congruent Go-to-Win cards relative to the con-
flicting NoGo-to-Win stimuli (Figure 2B). Thus, when av-
eraged across the nine experimental blocks, response
accuracy in the control group indicated no Pavlovian bias
for rewarding cards whatsoever. For avoid cards, both
groups responded more accurately to congruent NoGo-
to-Avoid cards, and this effect was more prominent in
controls. More detailed examination of task performance
for all four card types across experimental block revealed
that, with the exception of the Go-to-Win condition, re-
sponse accuracy was gradually increasing with task prog-
ress in both groups, with the expected intermittent drops
in performance in the critical induction blocks in the
yoked group (Figure 2C). On Go-to-Win trials, however,
the control group showed a surprising gradual reduction
in accuracy, from 71.1 ± 30.6% to 47.4 ± 39.4% (M± SD;
first vs. final blocks).

This pattern suggests that, although successfully over-
coming their Pavlovian (Go) response tendencies for re-
warding cards in the conflicting NoGo-to-Win condition
(accuracy increase from 59.1 ± 34.0% in Block 1 to
69.1 ± 32.4% in Block 9), control participants over-
compensated and adopted the same response strategy
in Go-to-Win trials, despite being suboptimal for this card
type. The yoked group distinguished better between con-
gruent and conflict trials in main blocks, as their improv-
ing performance for conflict cards was not accompanied
by reductions in task performance in the congruent trials
(Figure 2C). These results suggest that the two groups
might have also differed in how they implemented CC
during the task: Stronger inhibition of Pavlovian bias via
CC can be expected exclusively for conflicting cards in
the yoked group, whereas the reduction in Pavlovian bias
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for congruent Go-to-Win cards might be related to strong
CC in control participants (see Yoking Reduces FMθ in
Pavlovian Congruent Trials and Disrupts the Relation-
ship between FMθ and Pavlovian Bias section).

As for the two predefined PPB parameters (RBI and
PBS), we found strong evidence for reducing Pavlovian
bias by the end of the task (main effect of block: BF10 =

38.29). Similarly to our baseline measures, participants
showed stronger response inhibition upon aversive
stimuli (main effect of index: BF10 = 14.51). Although
the Bayes factor for the Block × Group interaction term
suggested only weak evidence in favor of between-group
differences in the temporal evolution of Pavlovian bias
throughout the task (BF10 = 2.14; Figure 2D), separate

Figure 2. Conventional analysis of behavioral data. Response accuracy obtained from both groups, calculated separately for the four card types in
the baseline (A) and EEG sessions (B), and throughout the whole task on Day 2 (C). Changes in PPB (D), the total number of Go responses (E), and
the total amount of points earned (F) across the nine experimental blocks for both groups. Error bars represent standard errors; block numbers
depicted with red are induction blocks in the yoked group.
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analysis for data obtained in the two groups revealed
robustly reducing Pavlovian bias in the control group only
(control: BF10 = 8843.61; yoked: BF01 = 100.00). Changes
in the magnitude of PPB across the nine experimen-
tal blocks were found to be similar for RBI and PBS in
both groups (control: BF01 = 166.66; yoked: BF01 =
142.85).
With respect to NumGo, we found strong evidence for

more Go responses in the yoked group (BF10 = 156.19;
Figure 2E), an effect that was not restricted to main or
induction blocks (BF01 Group×Block = 250.00). Finally,
the amount of points earned throughout the EEG ses-
sion did not differ between groups (BF01 Group = 8.13;
BF01 Group×Block = 40.00; Figure 2F).
To investigate the Pavlovian bias and its influence on RL,

we implemented a computational RL model for our task
(Swart et al., 2018; Cavanagh et al., 2013). Model selection
revealed that the computational model M3 incorporating
single-trial FMθ power and five groups of free parameters
(α: learning rate, β: temperature, π: Pavlovian parameter,
b: Go bias, ω: theta-scaling; out of which α, β, π, and b were
allowed to vary on a block-by-block basis) was superior to
the two simpler models M1 and M2 in accounting for
variations in behavioral responses. Posterior predictive
simulations using the fitted parameter distributions were
performed to generate new choices and outcomes for
both groups and all main blocks (baseline; Blocks 2, 3,
5, 6, 8, and 9 on Day 2) according to the winning model
(Figure 3A). We found satisfactory correspondence be-
tween simulated and real data, as response accuracy
was gradually increasing for all four card types (in-
creasing/reducing Go probabilities for Go/NoGo trials, re-
spectively), and we observed decreasing Pavlovian bias
with task progress (reducing advantage in accuracy for
Pavlovian congruent Go-to-Win and NoGo-to-Avoid
cards relative to conflicting Go-to-Avoid and NoGo-to-
Win cards). Model-derived posterior densities for the
group-level parameters, indicative of estimates for the
first block (Figure 3B), revealed comparable values with
earlier studies (Swart et al., 2018; Cavanagh et al., 2013).
Notably, the Go bias parameter b was in the positive
value range excluding zero (μb0 = 0.87 [0.45, 1.28]Þ, suc-
cessfully capturing participants’ overall tendencies to re-
spond with Go rather than NoGo irrespective of card
valence. Conversely, the group-level Pavlovian bias
parameter π also showed a fully positive distribution
(μπ0 = 0.27 [0.08, 0.46]), confirming that, in addition to
the Go bias, participants were more likely to initiate/
suppress actions once they learned that a given card
was potentially rewarding/punishing. Finally, the negative
theta-scaling ω parameter (μω0

= −0.16 [−0.25, −0.06])
was in accordance with earlier observations regarding the
negative relationship between single-trial FMθ power and
the magnitude of the Pavlovian parameter (π), support-
ing views that FMθ represents the recruitment of top–
down CC over prepotent (in)action tendencies (Swart

et al., 2018; Cavanagh & Frank, 2014; Cavanagh et al.,
2013).

Crucial to our behavioral manipulation of yoking, our
groups differed in how parameter estimates changed dur-
ing the EEG session (Day 2) relative to the baseline block
(Day 1): Controls showed gradual reductions in their Go
bias (b) and Pavlovian bias (π) parameters, whereas the
learning rate and the temperature parameters remained
relatively stable throughout the task (Figure 3C). This in-
dicates that subjects slowly learned to overcome their
biases as experience with the task increased. This effect
appeared to be weaker in the yoked group. To quan-
titatively assess if block-by-block variations in α, β, b,
and π parameters differed between the two groups, we es-
timated the magnitude of parameter changes throughout
the task by fitting models where changes in parameter
values were linearly constrained across experimental blocks
(i.e., linearly increasing or decreasing with block number
rather than being free to vary across blocks) and calculated
95% HDIs for control-yoked group differences for these
regression coefficients. This analysis yielded a mean differ-
ence of −0.031 [−0.042, −0.018] for Pavlovian bias,
−0.018 [−0.065, 0.031] for the Go bias, 0.023 [−0.005,
0.050] for the learning rate, and −0.020 [−0.043, 0.002]
for the temperature parameter. Given that 95% HDI
estimates were entirely below 0 for π, we conclude that
reduction in Pavlovian bias was more pronounced in the
control group, indicating that intermittent loss of control
in yoked participants interfered with dynamic adjust-
ments of prepotent response tendencies as the task
progressed. Because the 95% HDIs for the slope differ-
ences calculated for the other three parameters included
zero, similar conclusions could not be drawn for these
estimates.

In addition, we observed higher α and β values in
induction versus main blocks in the yoked group
(Figure 3C), suggesting that participants assigned more
weights to prediction errors during Q-learning updates
(α), and produced more stochastic choices characteristic
of exploratory behavior (β) when control over feedback
was compromised. To test if this effect was robust, we
calculated posterior distributions for main induction
block differences for all parameters in the yoked group,
merged across Blocks 2, 3, 5, 6, 8, and 9 and Blocks 1, 4,
and 7, respectively. This analysis revealed negative esti-
mates not only for the learning rate (M = −0.346
[−0.402, −0.292]) and temperature parameters (M =
−0.419 [−0.459, −0.377]), but also for Pavlovian bias
(M = −0.034 [−0.056, −0.011]) and Go bias (M =
−0.371 [−0.477, −0.266]), suggesting that participants
increased their learning rates (α), exploration ten-
dencies (β), and predispositions for emitting an active
response (b) when the environment became more
volatile (Pulcu & Browning, 2017; Behrens et al., 2007).
Crucially, the negative estimate for parameter π con-
firmed our hypothesis regarding the stronger reliance
on Pavlovian influences when instrumental learning was
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Figure 3. Computational modeling results. (A) Our winning model (M3) captured the main aspects of the trial-by-trial variation of choice
behavior for the four card types. Original data are depicted with dashed lines, simulated data using M3 is shown with solid lines along with
the 95% HDI. (B) Posterior estimates for the five types of free parameters of M3. (C) Changes of model parameters in the two groups and across
all experimental blocks. Estimates from induction blocks (1, 4, 7) are depicted in red. All densities are shown as deviations from values
calculated for the baseline block, represented by point estimates.
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ineffective due to yoking. Altogether, the finding of
higher π estimates in the yoked group both during and
following induction blocks point toward weaker CC in
these participants.

Yoking Reduces FMθ in Pavlovian Congruent Trials
and Disrupts the Relationship between FMθ and
Pavlovian Bias

Because previous work identified frontal 4–8 Hz theta oscil-
lation (FMθ) as a neural signature for CC (Cavanagh & Frank,
2014), we hypothesized that enhanced Pavlovian bias in
yoked participants would be accompanied by weaker
FMθ during decision-making. First, we measured trial-
averaged FMθ power in our a priori defined time interval
(175–350 msec), frequency range (4–8 Hz), and scalp
region (Fz, FC1, FC2, Cz) and compared it between condi-
tions (Pavlovian congruent vs. conflict), block types (main
vs. induction), and groups (control vs. yoked). Bayesian
repeated-measures ANOVA revealed the absence of
overall conflict-related or group-associated differences
(BF01 Congruency = 6.66 and BF01 Group = 2.38). How-
ever, we found moderate evidence for an interaction
between congruency and group (BF10 = 5.28), an effect
that was not influenced by block type (BF01 Congruency×

Group × Block type = 3.33) or the valence of the card
(BF01 Congruency × Group × Valence = 4.36; BF01 Congruency ×

Group × Block Type× Valence = 1.76). We measured stronger
FMθ for congruent trials in the control group, and the an-
ticipated effect of congruency (conflict > congruent) was
present only in yoked participants (Figure 4). This finding
was unexpected because two previous studies have

reported enhanced FMθ in very similar tasks for stimuli that
induced conflict between prepotent Pavlovian response
tendencies and instrumental task requirements (Swart
et al., 2018; Cavanagh et al., 2013). However, the current
EEG result aligns well with our behavioral observations,
namely, that control participants showed deteriorating per-
formance in the Pavlovian congruent Go-to-Win condition,
presumably because they recruited FMθ-related CC
mechanisms in a rather maladaptive way for these cards,
resulting in stronger Pavlovian bias by the end of the
task. To exclude the possibility that increased FMθ power
for Pavlovian congruent cues in the control group was
exclusively related to general motor inhibition in Go-to-
Win trials rather than to CC over Pavlovian bias per se,
we ran Bayesian paired-samples t tests to pairwise com-
pare FMθ power obtained for the four card types and
found evidence for comparable FMθ for Go-to-Win and
NoGo-to-Avoid cards (main blocks: BF01 = 3.95; induc-
tion blocks: BF01 = 3.99).

To further investigate whether brain responses related
to control over conflicting stimuli would occur at dif-
ferent latencies and/or above other brain regions, we
conducted a data-driven analysis of event-related spectral
perturbations up until 450 msec postcue onset and
between 3 and 12 Hz, involving all scalp channels.
Permutation-based 2 × 2 ANOVA confirmed the en-
hanced FMθ power for congruent cards in the control
group, causing significant ( p < .05, FDR-corrected) con-
gruency effects in the yoked data only (Figure 5).
However, this effect emerged in a somewhat later time
window (200–400 msec) and was shifted posteriorly to-
ward central electrodes (C3, Cz, C4, CP1, CP2) relative
to our predefined time–frequency cluster.

We also extracted single-trial FMθ power to test if varia-
tions in this measure would modulate the impact of
Pavlovian bias in subsequent choices on a trial-by-trial basis.
We followed earlier reports (Swart et al., 2018; Cavanagh
et al., 2013) and incorporated FMθ into the computational
model M3 with a scaling parameter ω that captures the
strength and the direction of the relationship between pa-
rameter π and FMθ (see Methods). We hypothesized that
yoking would weaken control over Pavlovian bias, which
would manifest in the disrupted relationship between
FMθ and π (i.e., in ω values around 0). For this purpose,
we also estimated ωinduction, an additional parameter that
was extracted during induction blocks only, exclusively in
the yoked group. Relative to the value estimations for the
control group (−0.198 [−0.327 −0.053]), yoked partici-
pants had more positive ω values for both block types, with
the corresponding 95% HDIs including zero (Figure 3C;
main blocks: −0.100 [−0.243 0.041]; induction blocks:
−0.095 [−0.310 0.115]). Although these effects indicate
that the negative relationship between single-trial FMθ
and Pavlovian bias is weaker in the yoked group, the evi-
dence for a group difference in this regard was not com-
pelling as 95% HDI estimates for between-group effects
also included zero (Figure 3C; group difference for main

Figure 4. Pavlovian conflict-induced modulations in FMθ power in the
two groups. Error bars represent standard errors.
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blocks: −0.097 [−0.287 0.108]; group difference for in-
duction blocks: −0.103 [−0.361 0.145]).

DISCUSSION

Yoking Prevents Adopting Suboptimal
Decision-making Strategies to Pavlovian
Congruent Cues

In this study, we report that, in an environment with stable
action–outcome contingencies, healthy adults in our con-
trol group gradually adopted suboptimal decision-making
strategies when being exposed to the same task multiple
times. Specifically, these subjects showed overly reduced
Pavlovian response tendencies by avoiding Go responses
to rewarding Go-to-Win cards. This effect was accompa-
nied by comparable FMθ power in Pavlovian congruent
versus conflict trials, as well as a clear negative relationship
(indexed by parameter ω) between single-trial FMθ and
Pavlovian bias. Given that FMθ is widely recognized as
the neural correlate of CC, these results indicate that the

control group implemented top–down inhibitory mecha-
nisms over Pavlovian response tendencies also in trials
when they were actually beneficial (i.e., Go-to-Win trials).
An intriguing finding of the current study is that inter-

mittent absence of control over rewards and losses during
RL prevented our yoked participants from suppressing
their Pavlovian bias in Pavlovian congruent trials and thus
to rely on Pavlovian influences in a more successful way.
Even though our conventional analysis focusing on two in-
dices of PPB (i.e., RBI and PBS) did not provide compel-
ling evidence for a yoking effect, more sophisticated
computational modeling showed (1) that the gradual re-
duction in parameter π was weaker in yoked participants
and (2) that estimates for π were increased during yoking
blocks. This result agrees with a recent study arguing that,
with reduced instrumental control over the environment,
the instrumental valuation system will necessarily provide
more imprecise predictions about outcomes, which in
turn will shift the arbitration between instrumental versus
Pavlovian controllers toward the latter one, leading to en-
hanced Pavlovian bias in decision-making (Dorfman &

Figure 5. Data-driven analysis of changes in FMθ power. (A) Permutation-based ANOVA revealed significant ( p < .05, FDR-corrected) conflict >
congruent FMθ difference in the yoked group only (region highlighted with solid black line). Although this effect was present in our predefined
frequency range (4–8 Hz; region highlighted with red dotted line), it was shifted to a later time interval (200–400 msec postcue onset). No
effects were found in induction blocks, indicating that FMθ was altered in yoked participants when feedback signals were unreliable. (B) Scalp
distribution of FMθ power (4–8 Hz) in the 200–400 msec time interval showed significant effects in the yoked group only (electrodes highlighted with
gray discs), exclusively for main block data. Relative to our predefined scalp distribution (electrodes within the red dotted line), the effect shifted
to more posterior central electrodes. Again, no effects were found in the induction blocks.
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Gershman, 2019). In addition, FMθ was substantially weaker
in the yoked group for Pavlovian congruent versus conflict
cards, indicating that these participants were more success-
ful in determining whether CC was necessary or not.
Finally, our data provided some evidence for the compro-
mised efficacy of CC in reducing Pavlovian bias both during
and following yoking, as reflected by the more positive
value estimates for parameter ω. In summary, we found ad-
vantageous effects of intermittent absence of control over
rewards and losses over choice behavior, an outcome that
we did not expect when the study was designed.
Although our prediction of observing stronger Pavlovian

bias in the yoked versus control group was supported by
the data, the underlying mechanisms turned out to be quite
different from what we anticipated. First, our yoked partic-
ipants’ overall response accuracy and the amount of earned
points were not impaired in main blocks, pointing toward
the absence of yoking-induced deficits in decision-making
when feedback was reliable. Because impaired coping with
task demands following yoking in a key feature of LH, this
finding suggests that our yoking procedure was not strong
enough to induce helplessness in our participants. Second,
behavioral and neural data for Pavlovian conflict trials in
main blocks were largely similar in the two groups, indicat-
ing adequate conflict-related performance irrespective of
group membership. The finding that the difference in
FMθ between the two groups stemmed from Pavlovian
congruent instead of conflict trials is surprising, does not
align with our hypotheses, and is contradicting previous re-
ports (Swart et al., 2018; Cavanagh et al., 2013). Inter-
estingly, however, another study also failed to replicate
the conflict-induced FMθ enhancement in healthy adults
(Albrecht, Waltz, Cavanagh, Frank, & Gold, 2016), providing
some evidence against the robustness of this phenomenon.
Overall, these results suggest that control participants
overcompensated their conflict-associated strategies of im-
plementing CC over Pavlovian bias in NoGo-to-Win trials
(i.e., by inhibiting responding to win cards) and adopted
the same strategy for all rewarding cards, despite being dis-
advantageous in Go-to-Win trials. Thus, it seems that, by
having more control over outcomes (i.e., not being yoked
in three blocks), the control group was less successful in
evaluating whether CC was necessary or not, which was
manifested in comparable FMθ power for congruent versus
conflict cards. What can be the explanation for the stronger
CC in the control group and for more appropriate behav-
ioral adjustments in yoked participants? The answer to this
question might lie in how uncertainty, caused by impaired
control over the environment, influences the valuation of
mental effort and the implementation of top–down inhi-
bition during learning and value-based decision-making.

Yoking Might Interfere with Estimations of
Expected Value of Control

We propose that stronger uncertainty about the conse-
quences of actions during yoking interfered with the

calculation of the “expected value of control” (Shenhav,
Botvinick, & Cohen, 2013), resulting in more precise
conflict-related implementation of CC over Pavlovian bias
in the yoked group. It has been proposed that motivation
to engage in CC depends on the trade-off between the
estimated mental effort and the expected benefit of
consuming executive resources (Pessiglione, Vinckier,
Bouret, Daunizeau, & Le Bouc, 2018; Boureau, Sokol-
Hessner, & Daw, 2015; Shenhav et al., 2013). In these
models, the degree of control over environmental events
is of key importance, which can be either captured by the
advantage of any chosen action relative to a random re-
sponse (Boureau et al., 2015) or by the probability of
achievable outcomes via exerting control (Shenhav
et al., 2013; Huys & Dayan, 2009). Because our yoking
protocol was deliberately designed to invalidate any ef-
fort for influencing action outcomes, this behavioral ma-
nipulation could have easily led to the overestimation of
CC costs in this group.

On the other hand, we also found evidence for
yoking-induced alterations in how outcomes were used
to update action values. Modeling results revealed in-
creased learning rates in induction blocks, a sign of
overreliance on recent feedback signals that can inter-
fere with the gradual accumulation of reinforcement his-
tory (Pulcu & Browning, 2017; Behrens et al., 2007).
This finding indicates that, with more uncertainty
around choice outcomes, participants adopted a differ-
ent strategy to utilize information about the value of ex-
erting CC. From the argument above, it follows that
more specific conflict-associated enhancement of FMθ
in the yoked group was likely due to more cautious im-
plementation of CC, as the payoff of mental effort was
most probably underestimated.

Uncertainty is generally regarded as the main driving
force determining the selection between valuation sys-
tems (Boureau et al., 2015; Daw, Niv, & Dayan, 2005).
In this study, we aimed to induce helplessness by intro-
ducing “unexpected” uncertainty to the environment, be-
cause response–feedback contingency was disrupted
without any prior warning and choices could not be reli-
ably shaped via trial and error. This type of uncertainty
has been linked to norepinephrinergic activity and higher
propensity to make more random, exploratory decisions
(Pulcu & Browning, 2017; Cohen, McClure, & Yu, 2007).
Consistent with this account, we also detected more
intensive exploration during yoking (reflected by the in-
creased temperature parameter), but not in main blocks
that were dominated by “expected” uncertainty (i.e., sta-
ble response–feedback contingencies).

A puzzling finding of the current study is the unexpected
increase in CC and the consequential gradual reduction in
Go-to-Win performance and Pavlovian bias in our control
group. None of the previous studies utilizing similar orthog-
onalized Go/NoGo task designs reported a similar behav-
ioral phenomenon (Swart et al., 2018; Albrecht et al.,
2016; Cavanagh et al., 2013; Guitart-Masip et al., 2012).
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We note, however, that in those studies, the task was
much shorter (40 vs. 180 presentations per stimulus)
and often also easier (80–20% vs. 70–30% feedback va-
lidity). Thus, it seems that, by prolonging the task, sub-
optimal patterns of behavior can emerge under stable
response–feedback contingencies, whereas increased
environmental volatility might protect participants from
adopting these decision strategies.

Another potential task parameter underlying the
observed effects is the introduction of a small Go-cost.
We designed the Go-cost to have minimal impact on the
total amount of points earned during an experimental
session: With its size (−1 points), it was suboptimal to
withhold Go responses to all cards relative to emitting at
least one correct Go response (+3 points in net income
with each correct Go). Still, it is possible that in a more
stable task environment, control participants showed in-
creased sensitivity to the Go-cost and gradually shifted
their decisions toward inaction, whereas yoking pre-
vented adopting such response strategies, resulting in
higher proportions of Go responses (Figure 2E). How-
ever, inaction tendency in the control group was valence-
specific, as response accuracy for Pavlovian congruent
NoGo-to-Avoid cards was higher than for conflicting
NoGo-to-Win cards. In a similar vein, the putative increased
sensitivity to the Go-cost (or reduced motivation leading
to inaction tendency) in controls would not explain their
gradually increasing Go-to-Avoid accuracy, being sugges-
tive of successful response initiation during Pavlovian con-
flict (Figure 3C). Finally, control participants’ enhanced
FMθ power in congruent trials cannot be exclusively ex-
plained by CC related to motor inhibition (rather than to
Pavlovian bias), because we found no evidence for dif-
ference for this neural measure between congruent Go-
to-Win and NoGo-to-Avoid trials. Thus, although we
acknowledge that the inclusion of the Go-cost may have
contributed to the observed group differences, inaction
in itself cannot explain the pattern in the data, without
considering the effect of yoking on Pavlovian bias.

Yoking Modulates Activity in the Medial pFC

Several lines of research support the notion that the ef-
fects of yoking in our study are linked to activity in the
dorsal ACC (dACC). The dACC has extensive connections
with striatal and lateral prefrontal regions (Holroyd &
Yeung, 2012) and has been associated with conflict detec-
tion (Botvinick, Braver, Barch, Carter, & Cohen, 2001), the
processing of prediction errors (Holroyd & Yeung, 2012;
Walsh & Anderson, 2012), monitoring environmental vola-
tility (Behrens et al., 2007), uncertainty-based competition
between valuation systems (Daw et al., 2005), cost/benefit
analysis of control-demanding behavior (Pessiglione et al.,
2018; Shenhav et al., 2013; Holroyd & Yeung, 2012), signal-
ing the need for CC (Cavanagh & Frank, 2014), and over-
riding Pavlovian bias (Swart et al., 2018; Cavanagh et al.,
2013). Importantly, dACC activity is also modulated by

experimental manipulations aiming at inducing LH in
healthy volunteers (Salomons et al., 2012; Diener,
Kuehner, & Flor, 2010; Bauer, Pripfl, Lamm, Prainsack, &
Taylor, 2003). The present results align well with these find-
ings because (1) our computational modeling revealed in-
creased learning rates during LH induction pointing toward
dACC involvement (Behrens et al., 2007) and (2) we found
that, in Pavlovian congruent trials, yoking influenced FMθ,
an electrophysiological signature of dACC activity
(Cavanagh & Frank, 2014; Narayanan, Cavanagh, Frank, &
Laubach, 2013; Womelsdorf, Johnston, Vinck, & Everling,
2010; Wang, Ulbert, Schomer, Marinkovic, & Halgren,
2005).

Implications for LH

Although our paradigm was designed to induce a state
resembling LH in healthy adults, we acknowledge that
we did not accomplish this aim. First, explicit success
and control ratings after the EEG session were similar
between groups, and second, intermittent yoking was not
accompanied by worse task performance in main blocks.
Nevertheless, we did observe carry-over effects from induc-
tion blocks to nonyoked parts of the experiment, manifest-
ing in better accuracy in Go-to-Win trials (Figure 2C), higher
prevalence of Go responses (Figure 2E), larger Pavlovian
bias parameter estimates (Figure 3C), and weaker FMθ
power (Figure 5) in main blocks. Moreover, we showed
that, although not having control over action outcomes,
our subjects demonstrated higher learning rates, more ran-
dom responding, stronger Go bias, and somewhat weaker
relationship between Pavlovian bias and single-trial FMθ
(Figure 3C). Therefore, we conclude that our behavioral
manipulation was successful for uncovering neural and
behavioral aspects of reduced control over reinforcers.
Despite the above concerns, our findings lend some sup-
port to the reformulation of LH put forward by Maier
and Seligman (2016) that behavior in yoked animals
might not be learned, but rather be a part of their innate
(Pavlovian) behavioral repertoire when top–down inhibi-
tion arising from the medial pFC is weak. It is up to future
studies to develop more potent experimental setups for
investigating how more prominent versions of LH inter-
fere with value-based decision-making in health and
disease.
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