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A B S T R A C T   

Mind wandering (MW) is a mental phenomenon humans experience daily. Yet, we lack a complete understanding 
of the neural basis of this pervasive mental state. Over the past decade there has been an increase in publications 
using transcranial direct current stimulation (tDCS) to modulate the propensity to mind wander, but findings are 
diverse, and a satisfactory conclusion is missing. Recently, Boayue et al. (2020) reported successful reduction of 
mind wandering using high-definition tDCS (HD-tDCS) over the dorsolateral prefrontal cortex, providing pre-
liminary evidence for the efficacy of HD-tDCS in interfering with mind wandering. The current study is a high- 
powered, pre-registered direct replication attempt of the effect found by Boayue et al. (2020). In addition, we 
investigated whether the effects of HD-tDCS on mind wandering would be prolonged and assessed the underlying 
processes of mind wandering using electroencephalography (EEG) and pupillometry during a finger-tapping 
random sequence generation task that requires the use of executive resources. We failed to find any evidence 
of the original effect of reduced MW during and after stimulation. When combining our data with the data from 
Boayue et al. (2020), the original effect of reduced MW caused by HD-tDCS disappeared. In addition, we 
observed increased occipital alpha power as task duration increased and increased midfrontal theta power 
preceding response patterns signaling high executive function use. Finally, tonic and phasic pupil size decreased 
as task duration increased yet, phasic responses were increased, while tonic responses were reduced preceding 
reports of MW. Additionally phasic pupil size also showed a tendency to be increased during periods of high 
executive function use. Importantly, none of the EEG or pupil measures were modulated by HD-tDCS. We 
conclude that HD-tDCS over the dorsolateral prefrontal cortex does not affect MW propensity and its neural 
signatures. Furthermore, we recommend that previously reported effects of tDCS on mind wandering and other 
cognitive functions should only be accepted after a successful pre-registered replication.   

1. Introduction 

Thoughts unrelated to the immediate here and now are often referred 
to as task unrelated thoughts (TUT) or mind wandering (MW; Antrobus 
et al., 1970). Being occupied with mind wandering is very common, both 
in everyday life (Killingsworth and Gilbert, 2010) and in experimental 
tasks (Smallwood and Schooler, 2006). In fact, research has found that 
humans spend up to half their waking hours occupied in thoughts un-
related to the here and now (Klinger and Cox, 1987). Researchers have 
argued that this phenomenon comes with both costs and benefits. 
Ruminating over past episodes is one of the major contributors to 
negative emotional states associated with mood disorders, such as 

depression and anxiety (Ottaviani and Couyoumdjian, 2013). Shifting 
our attention away from external stimuli can cause reduced performance 
in tasks that require focus, such as reading or driving (Yanko and Spalek, 
2013). However, MW has been proposed to be beneficial in problem 
solving, future planning or tasks that require creativity (Pachai et al., 
2016; Schooler et al., 2014; Smallwood and Schooler, 2015). 

As to how mind wandering occurs, there is an ongoing dispute in the 
scientific literature. There is a consensus that executive functions (EF) 
are related to mind wandering, though there are different views on the 
nature of this relationship. The “executive function use” (EFu) view 
claims that mind wandering shares the same EF resources with ongoing 
tasks, and therefore, the individual must actively choose to allocate 
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resources to either MW or the ongoing task (Smallwood and Schooler, 
2015; Watkins, 2008). The “executive function failure” (EFf) view, on 
the other hand, states that MW is the result of the failure of the executive 
system to keep us focused on the primary task (McVay and Kane, 2010). 
Both the EFf and EFu accounts explain why performance on cognitive 
tasks decreases with the onset of MW. However, the distinction between 
the two is reflected in opposite predictions when one aims at modulating 
MW propensity. For example, EFf predicts that cognitive training tar-
geting executive control mechanisms should be effective for attenuating 
increased prevalence of off-task thoughts in ADHD as patients get better 
at suppressing intruding thoughts, while such interventions are pre-
dicted to leave MW frequency unchanged or even increased in the EFu 
framework because an increase in EF can leave more capacity for MW. 
On the other hand, enhancing executive control might interfere with 
solving complex problems and creativity in the EFf, but not in the EFu 
view. In order to shed light on the role of EF in the onset of MW episodes, 
several cognitive tasks relying on EF have been developed to investigate 
mind wandering, such as the sustained attention response task (SART; 
Axelrod et al., 2015; Boayue et al., 2019; McVay and Kane, 2009) and 
the finger tapping random sequence generation task (FT-RSGT; Boayue 
et al., 2020). While the SART has been widely accepted as a task to 
investigate EF, a few problems have been highlighted recently: The task 
is very monotonous, and little EF is needed because target stimuli, to 
which prepotent response tendencies have to be inhibited, occur rarely 
(Boayue et al., 2020). 

The FT-RSGT is a combination of a modified version of the classical 
random number generation task (Baddeley et al., 1998; Towse, 1998) 
and a finger-tapping task (Kucyi et al., 2017; Seli et al., 2013): It consists 
of a combination of rhythmic finger-tapping in response to an ongoing 
metronome and the generation of random sequences by pressing the two 
available response-buttons in a random sequence. The idea behind this 
task is as follows: Generating random sequences is a task that draws 
heavily on executive resources. Consequently, we expect the random-
ness of the generated sequence to be related to the amount of executive 
resources diverted to it. In the context of mind wandering, this has been 
confirmed by the finding that sequences generated while engaged in MW 
are typically less random (Boayue et al., 2020; Teasdale et al., 1995). 
Furthermore, behavioral variability (BV) as measured by the deviation 
of the taps from the on-going metronome in finger-tapping studies has 
also been found to be an indicator of mind wandering (Kucyi et al., 2017; 
Seli et al., 2013), with behavior becoming more variable when attention 
is drawn away from the task. Since the metronome is fast-paced, the 
FT-RSGT provides good temporal resolution on both EF (changes in 
sequence randomness), and behavioral variability. By combining both 
measurements in a single experiment, the dynamic interplay between 
behavioral variability and executive function can be investigated. A 
previous study employing the FT-RSGT found that the two measures 
interact in relation to self-reported mind wandering: When randomness 
was high and EF was strongly engaged, there was a strong relationship 
between BV and MW, but this relationship was weakened when less 
executive resources were diverted to the task (Boayue et al., 2020). This 
intriguing result may speak to the non-unitary nature of MW and may 
help in distinguishing different states underlying MW (Allan Cheyne 
et al., 2009; Mittner et al., 2016). 

In addition to studies elucidating the nature of MW on a behavioral 
level using cognitive tasks, there has been an increase in research 
focusing on the role of neural networks in MW (Andrews-Hanna et al., 
2010; Dixon et al., 2018; Fox et al., 2013), and in methods for manip-
ulating their activity with non-invasive brain stimulation (NIBS) tech-
niques (Axelrod et al., 2015, 2018; Boayue et al., 2019; Coulborn et al., 
2020; Csifcsak et al., 2019; Csifcsák et al., 2018; Filmer et al., 2021). To 
identify these networks, researchers have attempted to locate neural 
markers of mind wandering, such as electrophysiological signatures 
recorded by electroencephalography (EEG; Braboszcz and Delorme, 
2011; Kawashima and Kumano, 2017), functional magnetic resonance 
imaging (fMRI; Chou et al., 2017; Christoff et al., 2009; Mittner et al., 

2014) or both (Groot et al., 2021). For example, an EEG study found 
reduced mismatch negativity (MMN) event-related potentials during 
MW, possibly indicating attenuated monitoring of the sensory environ-
ment and weaker responses to unexpected events (Braboszcz and 
Delorme, 2011). Additionally, alpha oscillations have been observed to 
increase during wakeful rest and are thought to mediate attentional 
lapses and task unrelated thought (Braboszcz and Delorme, 2011; 
Macdonald et al., 2011; O’Connell et al., 2009). In particular, it has been 
hypothesized that increased alpha power reflects a top-down control 
measure to prevent brain regions involved in competing processes to 
interfere with task performance (Jensen et al., 2012; Sauseng et al., 
2005). 

In addition, measuring changes in pupil diameter (pupillometry) is 
yet another tool that is increasingly being used to get a better under-
standing of how and when mind wandering occurs (Mittner et al., 2016; 
Schwalm and Jubal, 2017). Evidence suggests that tonic and phasic 
pupillary responses are modulated by norepinephrinergic signalling 
(Joshi et al., 2016), and that phasic pupillary responses are correlated to 
mental effort (van der Wel and van Steenbergen, 2018). This makes 
pupillometry a useful tool to investigate neural processes underlying 
MW, which has been hypothesized to be driven by the norepineph-
rinergic system (Mittner et al., 2016). Another advantage of pupillom-
etry is that it can easily be combined with other measurements such as 
EEG or fMRI in MW research, without causing interference or compli-
cating the signals (e.g., Groot et al., 2021). In addition, pupillary re-
sponses are elicited by stimuli in both the visual (Barbur et al., 1992) and 
auditory domains (Zekveld et al., 2018) and can therefore be studied 
across different modalities. By combining multiple measures with high 
temporal resolutions such as EEG and pupillometry, with cognitive tasks 
designed to induce MW, it is possible to get a better understanding of the 
spatiotemporal relationship of MW and their neural correlates (Groot 
et al., 2021). Using these tools, researchers have observed the involve-
ment of several networks working together to produce and maintain the 
phenomenon of MW (Christoff et al., 2016; Groot et al., 2021; Mittner 
et al., 2014; Poerio et al., 2017). 

Evidence suggests that activity in brain regions of the default mode 
network (DMN) is anti-correlated with activity in networks underlying 
the processing of task-relevant external stimuli (Andrews-Hanna et al., 
2010; Smallwood et al., 2012a). It has been proposed that the DMN is 
responsible for providing the content to which we can mind wander by 
retrieving traces from episodic memory (Kam et al., 2022, Andrew-
s-Hanna et al., 2010; Dixon et al., 2018; Fox et al., 2013, 2015). How-
ever, the DMN alone is not responsible for the experience of mind 
wandering, and spontaneous thoughts most likely depend on the com-
plex interplay between multiple different networks (Kam et al., 2022; 
Christoff et al., 2016; Fox et al., 2015). The frontoparietal control 
network (FPCN) along with the dorsal attention network (DAN) and the 
ventral attention network have been observed to regulate when and 
where we shift our attention (Christoff et al., 2016; Smallwood et al., 
2012a). During cognitive tasks, activity is modulated in the FPCN along 
with the DAN, which seems to be associated with attentional shifts be-
tween task demands and MW (Brissenden et al., 2016; Christoff et al., 
2016). Therefore, a cooperation between systems involving control and 
coordination, such as the FPCN, coupled together with the DMN for 
content, might be involved in the dynamic interplay in how humans 
select, evaluate and guide which content is available for conscious 
thought (Andrews-Hanna et al., 2010; Christoff et al., 2016; Fox et al., 
2015, 2015, 2015; Smallwood et al., 2012b; Yeo et al., 2011). The 
importance of executive control in the MW process makes the FPCN an 
excellent target for interfering with mind wandering using NIBS 
methods. 

The dorsolateral prefrontal cortex (DLPFC) is one of the core regions 
of the FPCN and has frequently been targeted using brain stimulation 
due to its superficial location and hence, easy accessibility for NIBS. 
Perhaps, the most widely applied NIBS method is transcranial direct 
current stimulation (tDCS), which operates by applying low-intensity 
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direct currents to the head to induce an electric field across the cortex 
(Stagg and Nitsche, 2011). Depending on the polarity of the stimulation, 
this electric field can either depolarize or hyperpolarize the neuronal 
resting potential of cortical pyramidal neurons, making it a versatile tool 
for modulating brain activity. Some studies provide evidence for tDCS to 
induce neuroplastic effects when applied for longer stimulation periods 
(Lefaucheur et al., 2014; Nitsche and Paulus, 2001), making it plausible 
that tDCS can be used to create lasting effects beyond the stimulation 
period. 

Initially, several studies reporting successful modulation of mind 
wandering propensity using traditional bipolar tDCS over the DLPFC 
provided an optimistic outlook (Axelrod et al., 2015; Kajimura et al., 
2016; Kajimura and Nomura, 2015). However, several subsequent 
studies have failed to replicate this effect (Coulborn et al., 2020), 
including a large-scale, pre-registered direct replication study (Boayue 
et al., 2019). This suggests that the initial positive results that were 
based on very low sample-sizes might have been overly optimistic (but 
see Axelrod et al., 2018; Csifcsak et al., 2019). Discrepancies between 
study findings might stem from the weak focality of traditional bipolar 
tDCS montages (Csifcsák et al., 2018), which, combined with the 
considerable variability in stimulation protocols and cognitive tasks 
across MW studies increase the likelihood to find inconsistent results. 
While newer registered reports (e.g., Filmer et al., 2019, 2021) show 
promising results in increasing MW with tDCS, it seems to be even more 
attractive to be able to reduce MW during a demanding task from an 
application point of view. 

The results regarding a reduction of MW when employing tDCS are 
also mixed. Kajimura and colleagues were the first to publish pre-
liminary evidence of successfully reducing TUTs when anodally stimu-
lating the right inferior parietal lobule (return electrode over left DLPFC) 
using a traditional bipolar tDCS montage (Kajimura et al., 2016; Kaji-
mura and Nomura, 2015). However, a pre-registered study with a higher 
sample size employing identical tDCS-protocols found the opposite ef-
fect (Filmer et al., 2021), mirroring the pattern of non-replicable effects 
for the studies aiming to increase MW with non-focal tDCS protocols 
reviewed above. A recent study implementing a more focal 
high-definition tDCS (HD-tDCS) protocol showed promising results in 
reducing the amount of mind wandering observed during the FT-RSGT 
(Boayue et al., 2020). Unfortunately, the final analysis pipeline from 
this study was not pre-registered, and therefore provided only pre-
liminary evidence for the found effect. In the current study, we aim to 
replicate the effect found by Boayue et al. (2020) using a pre-registered, 
high-powered study design and a registered report publication format, 
involving stage-1 peer-review of the protocol and analysis plan. Based 
on the outcomes of that previous study, we formulated and 
pre-registered four hypotheses: (1) We expect behavioral variability 
(BV) to be increased prior to self-reports of mind wandering when 
compared to on-task periods, (2) we expect the utilization of executive 
resources (operationalized by approximate entropy, AE, of the gener-
ated tap-sequences) to be reduced prior to mind wandering, (3) we 
expect an interaction effect of BV and AE such that the positive corre-
lation between BV and MW is more pronounced during periods of high 
AE, and (4) we expect the propensity to mind wander to be reduced in 
the real relative to the sham stimulation group during the stimulation 
block of the experiment (online effect of HD-tDCS). 

In addition, in a more exploratory approach, we extend the previous 
study in an attempt to gain a better understanding of the neural mech-
anisms underlying the pre-registered effects. These additions comprise 
(1) extending the original protocol with a third (offline) experimental 
block that enables assessing whether the effects of HD-tDCS outlast the 
duration of stimulation, (2) collecting pupillometry data to investigate 
how phasic and tonic responses are changed in periods preceding on- 
task vs. MW reports, and recording EEG to assess if neurophysiological 
measures of (3) sensory prediction errors (the mismatch negativity), (4) 
executive control (frontal midline theta oscillations) and (5) attention 
(posterior alpha activity) are influenced by mental state (on-task vs. 

MW), HD-tDCS (real vs. sham) and their interaction. These additional 
goals are secondary to the replication attempt, specified more loosely (i. 
e., not pre-registered in detail) and do not interfere with the exact 
replication protocol. 

2. Methods 

All materials, simulations and analyses are available in a public re-
pository hosted by the Open Science Framework (OSF) at https://osf. 
io/cv24f/. The repository was registered (frozen) before data collec-
tion such that none of the materials can be covertly changed after data 
has been collected. At the time of pre-registration, data from 43 par-
ticipants had already been collected, yet no data were accessed until 
data collection was completed. In addition, the full analysis was pre- 
registered at the OSF platform ahead of collecting the first dataset 
(registration document available at https://osf.io/9ytgp). The data were 
stored without reference to the stimulation condition to enable a blinded 
analysis (see section 2.2.3). 

2.1. Participants 

Participants were selected and recruited randomly amongst healthy 
adults in Tromsø through advertisements and social networks. Ethical 
approval was approved by the institutional ethics committee of the 
Department of Psychology at the UiT - The Arctic University of Norway. 
Participants received gift-cards (worth 300 NOK, approximately 30 
EUR), or course credits as compensation for taking part in the study. In 
accordance with the sample size calculations (see section 2.8.2), 100 
participants were recruited (50 valid datasets in each experimental 
group). In case a participant failed to provide a complete behavioral 
dataset, the dataset was excluded, and the participant replaced with a 
new one. Participants were replaced if the task was not completed, 
behavioral data were incomplete due to technical issues, stimulation 
equipment failed, or similar technical issues which rendered the 
behavioral dataset incomplete. The participant was not replaced if the 
EEG or pupillometry measurement was contaminated or failed. The in-
clusion criteria were: Fluent in either English or Norwegian, signed 
consent-form, aged between 18 and 35 years, no psychiatric/neurolog-
ical conditions (e.g., depression bipolar disorder, epilepsy etc.) currently 
or in the past, not under the influence of psychotropic drugs (except 
caffeine and nicotine), not taking central nervous system medications (e. 
g., antidepressants, antiepileptic drugs), good or corrected eyesight (to 
read the instructions on the screen), not extremely tired or hungry on the 
test day. All these criteria were assessed by self-report on the day of the 
experiment ahead of the experiment. After recruitment, participants 
were randomly allocated to either a sham or anodal stimulation group 
by a randomization list (see section 2.2.3 for more information about 
blinding). 

2.2. Design and procedure 

2.2.1. Lab, location, personnel 
The experiment was conducted in a lab containing an isolated 

experimental chamber that ensures a disturbance-free environment and 
reduces artifacts from environmental sources in the EEG. During the 
experiment, the outer door to the experimental room was locked so that 
no one could enter the lab without permission. The participant was 
placed in the experimental chamber that allows to control sound and 
lighting conditions. During the completion of the experimental task on 
the computer, the experimenter waited outside the chamber and 
monitored progress. Before starting the experimental task, room illu-
minance was measured and noted down on the datasheet (https://osf. 
io/arzxe/), and the participant was equipped with a high-quality ste-
reo headset (Multi-Function Headset210, Trust International B.V., Dor-
drecht, Netherlands) in front of a 19” flat-screen monitor. The distance 
to the monitor was standardized (70 cm) and the height of the entire 
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table was individually adjusted by the experimenter to fit each partici-
pant. The experimental computer ran PsychoPy3 (release v2020.1.3) 
and was set up so no other disturbing background processes were 
running. Since the experiment was conducted during Covid-19, neces-
sary precautions had to be made. A full list of contagion preventive 
measures can be found at https://osf.io/8ud5e/. Approval for these 
measures was obtained from the Faculty of Health Sciences at UiT - The 
Arctic University of Norway. 

Data were acquired by four trained experimenters. All experimenters 
received the same standardized instructions for conducting the experi-
ment and were required to practice on at least two pilot subjects before 
acquiring real data. Instructions to the participants were given in a 
written format to keep experimenter influences at a minimum, but there 
were opportunities for participants to ask questions or receive clarifi-
cations from the experimenter. All instructions are available in both 
Norwegian and English and can be found at https://osf.io/dxwqj/for 
English, and https://osf.io/5z6bx/for Norwegian. 

2.2.2. Design 
The experiment was set up as a mixed design with one between- 

subject factor (Group: sham vs. real stimulation) and one within- 
subject factor (Block: baseline, stimulation, offline), see Fig. 1. 

The main analysis was an ordinal regression analysis of mind- 
wandering propensity as a function of transformed AE (approximate 
entropy), BV (behavioral variability), their interaction, Trial, Block, 
Group, and the Group × Block interaction (details further down). The 
study implemented the exact same study protocol as our previous study 
(Boayue et al., 2020), up to the point where the stimulation block of the 
study was completed. The only divergence from the original study 
(Boayue et al., 2020) up to that point was that we also collected pupil-
lometric and EEG data. After the stimulation part, the study deviated 
from the previous protocol by collecting data in an additional offline 
block, during which oddball stimuli were presented in addition to the 
ongoing default metronome sound (details below). The task, the 
FT-RSGT, was developed in the original study (Boayue et al., 2020), and 
the study script is available at https://osf.io/t2b3m/. The study was 
administered either in English or Norwegian language, depending on the 
preference of the participant. All experimental materials and experi-
menter instructions are shared under the folder “materials” at htt 
ps://osf.io/cv24f/. 

2.2.3. Blinding 
The experiment was conducted in a triple-blind manner: Neither the 

experimenter nor the participant nor the analyst knew which treatment 
group each participant was assigned to. This was achieved by creating a 

collection of 100 stimulation protocol files, one for each participant with 
a unique code. Fifty of these files contained instructions for the stimu-
lator to apply active stimulation while the other 50 files applied sham 
stimulation. For the analysis, we created a list that contained the unique 
participant codes paired with arbitrary labels “A” and “B”, coded by 
investigator GC, to blind the main analyst MM, making it impossible to 
know which participant received sham or real stimulation during the 
main analysis. Only after the results were finalized was the identity of 
the groups revealed. The stimulation software (NIC2, version v2.0.11.1) 
on the stimulation computer allowed for a double-blind mode, where it 
was impossible for the experimenter to identify the stimulation protocol 
as the visual display on the stimulation computer was identical in both 
cases. It is a known issue that side-effects such as itching and redness of 
the skin under the electrode can reduce the efficacy of the blinding in 
tDCS studies with bipolar montages (Turi et al., 2019). To increase the 
efficacy of the blinding, an anesthetic cream containing 2.5% lidocaine 
and 2.5% prilocaine (EMLA) was applied under the stimulation elec-
trodes prior to stimulation. After a minimum of 15 min allowing the 
cream to be absorbed by the skin, any remaining cream was removed 
through the holes of the EEG cap using a cotton swab. To test the efficacy 
of the blinding, participants were asked at the end of the experiment to 
report if they believed they received real stimulation versus sham by 
answering a questionnaire consisting of a Likert scale ranging from 1 to 
7 where 1 was “definitely not stimulation, and 7 was “definitely stim-
ulation”. The questionnaire can be found at https://osf.io/auf82/. We 
have not observed compromised blinding in our previous application of 
this stimulation protocol (Boayue et al., 2020). 

2.3. HD-tDCS protocol 

The stimulation was delivered using a 4x1 HD-tDCS montage using a 
Starstim Neckbox (Starstim tCS, NE Neuroelectrics), and PISTIM EEG & 
tES Ag/AgCl electrodes (diameter: 12 mm). In this montage, one anode 
is surrounded by four cathodes (Fig. 2). This setup has been previously 
shown to create a strong electric field in and around the targeted brain 
region (Csifcsák et al., 2018, Fig. 2). In the real stimulation condition, 
participants received continuous stimulation at 2 mA intensity for 20 
min, with 30 s fade-in and 30 s fade-out periods. The sham protocol 
applied the fade-in and fade-out periods at the start of the stimulation 
block and then produced no currents until a final fade-in and fade-out 
period at the end of the block. 

Positioning of the electrodes was measured with a positioning cap, in 
accordance with the international 10/20 system. Anode intensity was 
set to 2 mA and returned evenly at each of the cathodes (Fig. 2). In-
structions on how to fit the cap were standardized and practiced by all 

Fig. 1. Flowchart of the experimental session. All participants started by completing an identical baseline block (800 trials). Next, they were randomized into two 
groups to complete the stimulation block (1600 trials) where they received either real or sham HD-tDCS. Finally, all participants completed an identical offline block 
(800 trials) that included oddball stimuli (~70 oddballs). 
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experimenters. Head circumference was measured to determine size of 
the cap (M = 54 cm, L = 57 cm, XL = 62 cm). Once the correct cap was 
fitted to the participant’s head, symmetry was checked by measuring the 
distance between inion, nasion, preauricular point and the respective 
electrode positions. The full procedure can be found at https://osf. 
io/u8n7x/. 

2.4. The cognitive task 

In order to establish a comparable level of understanding of the 
meaning of “randomness” when applied to a sequence of button-presses, 
participants were presented a written instruction using the flipping of a 
coin as an example. They were told that their button-presses should 
resemble the result of repeatedly flipping a fair coin and that, therefore, 
each of the two buttons should have equal probability of being pressed 
in each trial (see instructions at https://osf.io/pr2m9/). The participants 
then received instructions on the FT-RSGT through the experimental 
software and completed a short training session (60 s). After the training 
session the participants were asked to fill out a mini-quiz where they had 
to answer seven simple questions that were designed to check whether 
they understood the instructions regarding randomness, the task in-
structions and how to answer the thought probes. Wrong answers were 
corrected and, if necessary, the participant received an additional 
explanation. The mini quiz is available here at https://osf.io/c7ajk/. 

During the task, participants were instructed to press two buttons 
with their left or right index finger in a random order. Participants were 
also instructed to match every single button press as accurately as 
possible to the occurrence of a rhythmic tone. The tones had a pitch of 
440 Hz and were presented for a duration of 75 ms, with an inter- 
stimulus interval of 750 ms via high-quality stereo headphones. 

The stimulus (the rhythmic tone) was presented 800 times during the 
baseline block, 1600 times during the stimulation block and 800 times 
during the offline block. In the third, offline block, approximately every 
10th (8–12) stimulus had a higher pitch (880 Hz), but never within the 

first 10 stimuli after block start, or in the first 10 stimuli after a thought 
probe. These oddball stimuli were used for analyzing the mismatch 
negativity (MMN) in the EEG. The participants were interrupted regu-
larly by experience sampling thought probes, asking where the partici-
pants focus had been prior to the probe. The thought probe consisted of a 
Likert scale ranging from 1 to 4, with 1 labeled “clearly ON TASK” to 4 
being “clearly OFF TASK”. The exact question asked in the probes was 
“Where was your attention (your thoughts) directed right before this 
question appeared?”. The number of thought probes was fixed to 10 
probes in the baseline and offline blocks, and 20 probes in the online 
stimulation block. Probes appeared at a random interval between 40 and 
80 s (uniformly selected). 

2.5. Behavioral measurements 

2.5.1. Behavioral variability 
Behavioral variability was measured as the standard deviation of the 

inter-tap-intervals using the last 25 taps preceding a thought probe, and 
this index was z-transformed across subjects. No responses or trials were 
excluded during the calculation of the BV measure. That way, both 
missing responses as well as double-taps acted towards increasing the 
measure. This procedure is identical to the one used in Boayue et al. 
(2020). 

2.5.2. Approximate entropy 
To measure randomness in the sequences the participants created, 

we used a statistic called approximate entropy (AE; Pincus, 1991) which 
is defined at sequence level. AE is a measure for evaluating the irregu-
larity in any given sequence and is parameterized by parameter m. AE 
(m) measures the logarithmic frequency with which blocks of length m 
that are close together, remain close together for blocks augmented by 
one position (Pincus and Singer, 1996; Pincus and Kalman, 1997). The 
higher the AE(m) score, the more irregular the sequence. In a previous 
study, Boayue et al. (2020) determined the optimal parameter for 

Fig. 2. Positioning of electrodes (A) and electric field produced by the HD-tDCS (B). Electrode positions are according to the international 10/20 system (A). Anode 
(red) at F3, Cathodes (blue) at T7, C3, Fz and Fp1. Our equipment allowed us to place 3 more electrodes for EEG sampling (purple), which were placed at positions 
POz, Oz and P10, with the ground and reference electrodes (grey) placed at C4 and P9, respectively. Simulation of the normal component of the electric field induced 
by the 4x1 HD-tDCS montage (B), averaged over N = 18 individual datasets (realistic head models created from MR images of healthy adults), figure repurposed with 
permission from Csifcsák et al. (2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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subsequence length to be m = 2 and we have used the same value for our 
analyses. AE was calculated on the same subsequences of the 25 taps 
preceding each thought-probe and was transformed using the formula 
AEtrans = − log(log(2) − AEraw). 

2.6. Additional measurements1 

2.6.1. Pupillometry measurement and preprocessing 
During stimulus presentation, pupil size was recorded at a rate of 

500 Hz from both eyes with a desktop-mounted infrared video-based eye 
tracker (Eyelink 1000, SR Research), connected to a laptop running 
EyeLink Portable Duo (v6.12) software on Linux. Before the task started, 
the experimenter calibrated the equipment for pupillometric data 
collection. The eye tracker, chin rest and monitor were in a fixed posi-
tion (distance between eyes and tracker/monitor), with the only 
adjustment being the height of the desk which is adjustable with an 
electric motor to ensure a comfortable position for our participants. 

Preprocessing and analysis of the pupillometric data were conducted 
using the pypillometry package (Mittner, 2020) in Python. Raw pupil-
lometric data from both eyes were imported and the pupil data from the 
eye with the least missing datapoints for each subject was selected for 
further processing. Next, blink-detection using the procedure detailed in 
Mathôt (2013) was applied. The velocity parameters of the 
blink-detection algorithm were optimized for each individual to ensure 
that individual transients associated with blinking were adequately 
spotted while attempting to minimize the detection of non-blink arti-
facts, a list of all the parameters for each participant can be found on OSF 
(https://osf.io/tqn6m/). This procedure relied on visually inspecting 
and evaluating the raw and preprocessed signals by an expert analyst 
(JMG). Next, blinks that were close together in time (<100 ms) were 
merged to avoid interpolation artifacts. After linearly interpolating 
blinks using the method described in Mathôt (2013), a 5 Hz 
lowpass-filter (Butterworth) was applied to the continuous data. In 
addition, full datasets were excluded from the pupillometric analyses 
when judged to be of insufficient quality for further analyses (see section 
3.4.1 Missing data). 

Even after following the rigorous preprocessing steps described 
above, 25 datasets for the baseline part, 30 datasets for the stimulation 
part, and 23 for the offline part had to be excluded due to extreme 
blinking, exceeding our criterion that more than 50% of data were 
missing, or technical issues with pupil tracking. There were 61 subjects 
(31 real, 30 sham) with complete data on all three parts. Trial-by-trial 
measures of baseline and pupil-response were extracted using two 
methods. First, we used a classical approach in which the mean pupil- 
diameter (PD) in a window preceding each metronome sound ([− 200, 
0] ms) were used as baseline while the response was quantified as the 
difference of mean PD in a time-window following the metronome 
sound ([500, 700] ms) and the baseline. Because of the fast-paced design 
of our experiment, pupillary responses to the events overlapped and 
showed an accumulation of the signal because of the slow pupillometric 
response-curve (Hoeks and Levelt, 1993). To compensate for this, we 
used a novel deconvolution-based estimation approach (Mittner, 2020) 
to estimate both baseline and pupillary responses per trial. 

First, the data were downsampled to 250 Hz and high prominence 
troughs (negative peaks) were determined throughout the pupil signal. 
Tonic (baseline) fluctuations were estimated using B-spline basis- 
functions constrained to pass through these peaks in two iterations. 
After the first iteration, the tonic estimate was subtracted from the 
signal, followed by subtracting modeled pupil-response functions (PRF; 
Hoeks and Levelt, 1993) at known task events. This ensured that the 

second iteration of B-spline basis-functions (the final tonic estimate) 
remained below the actual pupil signal. Single-trial tonic pupil size 
features were calculated at every stimulus (metronome) onset. To model 
phasic pupil responses to task-related events, regressors for every 
stimulus and tap onset were convolved with the pupil-response function 
(PRF; h = tne-n / tmax, where n = 10 and tmax = 900; Hoeks and Levelt, 
1993) and fitted with a non-negative least-squares solver (Lawson and 
Hanson, 1995). To avoid multicollinearity between stimulus and tap 
onsets, the b-coefficients from all events within the [− 200, 200] ms 
window around stimulus onset were summed up together and assigned 
to that trial. Single-trial tonic and phasic pupil responses were stan-
dardized (z-scored) within subjects. 

2.6.2. EEG recording and preprocessing 
We measured the EEG during the baseline and offline blocks from all 

8 electrodes (see Fig. 2). Since the 5 stimulation electrodes were fixed 
(for replication purposes), we decided to place the last 3 available 
electrodes at POz, Oz and P10, respectively. These 8 electrodes were 
used to collect data for analyzing the MMN event-related potential, 
occipital alpha and midfrontal theta power (see section 2.9.5). 

To ensure low impedance, any remaining superfluous EMLA cream 
was removed, and the electrodes were administered with conductive gel 
(SIGNA) before they were fit into the cap. The impedance of the elec-
trodes was kept under 10 kΩ. The EEG was collected at 500 Hz, without 
online frequency filters. Data were analyzed using BrainVision Analyzer 
2 (BrainProducts GmbH, Gilching, Germany) and EEGLAB (Delorme and 
Makeig, 2004). Continuous EEG was filtered with a 4th-order zero 
phase-shift Butterworth filter (24 dB/oct) with a low cut-off of 0.5 Hz 
and a high cut-off of 30 Hz. 

The MMN was analyzed at Fz, from data collected in the offline block 
only (since we presented oddball stimuli in that block exclusively). We 
started with re-referencing the data to the average signal recorded above 
the mastoids (P9 and P10) and extracting epochs relative to metronome 
sound onset ([− 100 ms, 500] ms), separately for standard and oddball 
stimuli. Epochs containing artifacts associated with blinking, eye 
movements, muscle activity or other extracerebral sources were 
removed. The remaining epochs were baseline corrected ([− 100, 0] ms) 
and averaged. For each participant, we calculated difference waveforms 
(oddball – standard) and created grand average waveforms using data 
available from all participants. We anticipated finding an event-related 
potential with negative polarity between [120, 300] ms post-stimulus. 

To ensure that this peak corresponds to the MMN, we verified that 
the same component switched polarity at posterior-inferior electrodes 
(POz and Oz). Once identified, mean MMN amplitudes were measured at 
Fz (referenced to P9/P10) for each participant, in a 40 ms time-window 
centered at the MMN peak (120 ms) of the grand averaged difference 
waveform. Occipital alpha power was measured at electrodes POz and 
Oz from data collected in the baseline and offline blocks. The data were 
re-referenced to electrode Fz, and continuous EEG were divided into 
1000 ms-long epochs and baseline corrected using the mean over the 
whole epoch. As the first step, we verified whether occipital alpha power 
was related to subjective reports of MW. For this purpose, we merged 
data from the two blocks, and separated epochs preceding on-task vs. 
off-task reports (25 epochs preceding each thought-probe). After 
removing epochs with artifacts, we applied a Fast Fourier Transform 
(FFT) with a Hanning window of 10%, resulting in a frequency resolu-
tion of 0.97 Hz. We extracted the sum of power values corresponding to 
the alpha frequency band (8–12 Hz) for each participant and compared 
alpha power between on-task vs. off-task reports. We hypothesized to 
find enhanced occipital alpha activity during periods of mind wandering 
relative to the EEG collected prior to on-task reports on a group level. 
Once the association between posterior alpha activity and MW was 
established, we proceeded with analyzing data from the baseline and 
offline blocks separately. However, to increase statistical power, we 
used all epochs, not just those preceding thought-probes: We extracted 
occipital alpha power and compared changes between the first and the 

1 The details described in the following paragraphs were not specified in the 
pre-registration document submitted to OSF before data-collection. However, 
none of the files containing pupillometric or EEG data were opened prior to 
writing up the manuscript. 
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last blocks, separately for the real vs. sham HD-tDCS groups. 
Finally, we analyzed frontal midline theta power (MFT), which has 

been associated with the implementation of executive control in various 
cognitive tasks (Cavanagh and Frank, 2014). In this regard, we expected 
this neurophysiological marker to be related to the successful generation 
of random sequences during the FT-RSGT. We used data recorded at Fz, 
both during the baseline and the offline blocks. The EEG was 
re-referenced to the mean signal from electrodes P9 and P10, epochs 
centered around finger taps were extracted ([− 1000, 1000] ms, allow-
ing temporal overlap between subsequent epochs), and epochs con-
taining artifacts were removed. In order to verify that frontal midline 
theta power is related to executive control and its behavioral correlate 
(AE), we merged data from both blocks, but separated epochs corre-
sponding to high and low AE values (median split for each participant). 
Next, we performed a time-frequency decomposition of the segmented 
data using continuous complex Morelet wavelets (from 1 Hz to 30 Hz in 
30 linear-spaced frequency steps, Morlet parameter c = 3), and averaged 
data corresponding to high-vs. low-AE epochs separately. Theta power 
was assessed in [− 500, 0] ms (since we expected executive control to be 
implemented prior to motor responses), in the theta frequency range 
(4–8 Hz). We excluded trials where additional behavioral responses 
were observed in this time-window. Since we found the anticipated 
stronger theta power for high-AE epochs on the group level (including 
all participants), we applied the same analysis pipeline to extract theta 
power for both experimental blocks separately and extracted MFT power 
in the time-frequency window that was used in the merged analysis. This 
data was used to evaluate changes in frontal theta activity between 
blocks and groups. 

2.6.3. Feedback questionnaires 
After the task was completed, the participants were asked to answer 

a questionnaire as well as a few questions asked by the experimenter. 
The written questionnaire consisted of six items asking about potential 
distraction from wearing gloves (as part of the preventive COVID-19 
measures), discomfort from the electrodes, motivation, confidence, 
and intention of mind wandering as well as blinding efficacy. Items were 
rated on a 7-point Likert scale, and the full questionnaire can be found at 
https://osf.io/auf82/. 

The verbal questions covered randomization strategy, mind- 
wandering content and an open feedback question for future improve-
ments. These questions can be found at https://osf.io/7jxwa/. 

2.7. Deviations from the original study 

Even though we attempted a direct replication of Boayue et al. 
(2020), we acknowledge that there are subtle differences between the 
data collection protocols in the two studies. In the baseline block, par-
ticipants in our study were already equipped with the EEG cap because 
we intended to record EEG data already during that block. In Boayue 
et al. (2020) on the other hand, there was no EEG recording, and thus the 
EEG cap was not placed on the participants’ head before the stimulation 
block. Furthermore, since the original study put on the cap and elec-
trodes between the baseline and stimulation blocks, there might have 
been a small difference (between 1 and 3 min) in the duration between 
the baseline and stimulation blocks. 

Another difference between the two studies is that the EMLA cream 
was removed with alcohol after taking off the EEG cap. In our study, we 
had to remove the superfluous EMLA cream through the holes in the EEG 
cap and the application of cleansing alcohol was therefore impractical. 
In addition, we recorded pupillometry during the experiment and 
therefore needed to calibrate the equipment before the start of the study. 
Finally, due the ongoing Covid-19 pandemic, both the experimenters 
and the participants wore protective equipment (masks, gloves, coats) 
though participants were allowed to remove the mask during the actual 
experimental task. 

However, we believe that these deviations from the original protocol 

were negligible, and we do not see a theoretical reason that any of these 
changes should compromise our replication attempt. 

2.8. Statistical methods 

2.8.1. Analytic methods 
All analyses of behavioral data were implemented in the R pro-

gramming language (R Core Team, 2015) and Stan (Carpenter et al., 
2017), using the packages BayesFactor (Morey and Rouder, 2015), rstan 
(Stan Development Team, 2016) and brms (Bürkner, 2017). EEG data 
was analyzed in JASP (JASP Team, 2021), for preprocessing see section 
2.6.2. Pupillometric preprocessing was done using the pypillometry 
package (Mittner, 2020) in Python v.3.4 (Van Rossum and Drake, 2009). 

We used a single statistical model to test all four hypotheses. To 
circumvent some of the problems highlighted by Liddell & Kruschke 
(2018) when analyzing thought probe data as a continous rather than an 
ordinal variable, we used a Bayesian hierarchical ordered-probit 
regression model with random intercepts at the subject level and 
experimental block nested within subject (see Boayue et al., 2020). The 
model included BV (behavioral variability), AE (approximate entropy), 
their interaction, Trial (probe number), Group (sham vs. real stimula-
tion), Block (baseline vs. stimulation) and the interaction between 
Group and Block as independent variables. The model also included 
random intercepts at the subject level nested within Block. The full 
model description in R-code (implemented using the package “brms”) 
can be found at https://osf.io/3fcsx/. 

Based on this model, we calculated the posterior mean and 95% 
highest-density intervals (HDI) of the regression coefficients as well as 
evidence ratios (ER). Evidence ratios are calculated by dividing either 
the total positive or negative posterior mass by the total posterior mass 
on the other side. Specifically, the ER for a positive effect, ER+ =

P(x>0|θ)
P(x≤0|θ)

and the ER in favor of a negative effect is the inverse ER− =
P(x≤0|θ)
P(x>0|θ). 

These ratios can be interpreted as odds-ratios, e.g., how much more 
likely a positive effect is compared to a negative or no effect. Regarding 
our four main hypotheses, we calculated the area under the marginal 
posterior distribution of each parameter that is larger (for BV and AE ×
BV) or less than zero (for AE and Block × Group). If this area was larger 
than 0.95, we concluded that our hypothesis was supported. In case the 
calculated statistics failed this criterion, we reported the evidence pro-
vided by the data in terms of the posterior distribution (posterior mean, 
HDI and evidence ratios) but refrained from making definitive conclu-
sions. 

2.8.2. Power analysis and sample size rationale 
To estimate the power of this study, we used the posterior distribu-

tion from the model estimated in our previous study (Boayue et al., 
2020) to simulate random datasets, fitting back the analytical model and 
estimating the probability of finding an effect where 95% of the poste-
rior density is in the expected direction. We were most interested in the 
coefficients for AE, BV, AE × BV and the interaction between Group and 
Block (reflecting the effect of real vs. sham brain stimulation protocols). 
As a practical upper limit, due to time-constraints in the career track of 
the first author and because of the ongoing pandemic posing restrictions 
on our lab-work, we set a maximum sample-size of Nmax = 50 per group 
resulting in a total of 100 participants with valid datasets. 

For the effects of BV, AE and their interaction, we created random 
datasets by drawing samples of increasing sample-sizes from the pos-
terior distribution from the previous study and creating thought-probe 
responses using the model predictions (see https://osf.io/ctmbw/for 
the R-script). For each of these random datasets, we fit back the original 
model (with non-informative prior distributions as in our previous 
study) and calculated the posterior estimate of the regression co-
efficients. Next, for each random dataset, we calculated whether we 
were successful in obtaining an estimate for which the posterior distri-
bution was largely (95%) in the expected direction (positive for BV, 
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negative for AE and positive for the interaction). Finally, we collapsed 
across random datasets of the same sample size to calculate the pro-
portion of successful fits, which gave us an estimate of statistical power 
for the decision-rule that 95% of the posterior-distribution was in the 
expected direction. The advantage of this approach is that, instead of 
using only a point-estimate for the effect of interest, we automatically 
incorporate the uncertainty from the posterior distribution of the pre-
vious study into the power-estimate. 

We calculated the power that way using sample-sizes from the set 
N ∈ {5, 10, 20, 30, 40, 50, 60, 100} and simulated between 700 and 
7000 random datasets. The reason for the varying number of simulated 
datasets is computational runtime which was excessive for the larger 
sample-sizes. The resulting power-curves are shown in Fig. 3. The power 
curves for both AE and BV cross the threshold of 90% power quite early 
(around N = 20) while the interaction effects require larger samples 
(between 40 and 50 participants per group) to reach this threshold. 

For the effect of HD-tDCS on mind wandering, we used a similar 
approach as above, except that we simulated datasets that had varying 
effect-sizes as indicated by different standardized regression coefficients 
for the Block × Group effect. The reason for that was that we wanted to 
get a fuller picture of which effect-sizes could still be resolved with a 
certain power given intermediate sample sizes. We therefore randomly 
generated datasets of both varying sample sizes and varying effect-sizes, 
re-fit the models and calculated the percentage of “successful” studies 
where 95% of the posterior distribution was negative (the expected ef-
fect was in the negative direction, i.e., we expected HD-tDCS to reduce 
self-reported mind wandering, see Boayue et al., 2020). 

Unfortunately, the computational power required to calculate the 
power-curves with sufficient precision was prohibitive. We therefore ran 
the power-calculations for a grid of sample-sizes and effect-sizes for one 
week on a server with 80 cores and used a parametric model fit to 
provide an approximation to the actual power-curves. The simulation- 
based power-calculations are coded in the script https://osf.io/ct 
mbw/. We chose an asymptotic exponential growth model to calculate 
estimated power β̂ based on the standardized regression coefficient b 
and the sample size per group N as 

β̂(b,N)= 1 − exp
(
−
[
m0 +m1b+m2b2]N

)
.

Consequently, the rate of increase of the power curve with sample 
size N is modulated by the effect-size b where this modulation takes the 
form of a quadratic linear regression. Fitting this model to the data re-
sults in estimates for the coefficients m0, m1 and m2 which allows the 
approximation of power for any effect-size and sample-size. The fit of 

this model to the simulated power-curves is illustrated in Fig. 4. The 
power-analysis based on this approximation was deemed to result in an 
acceptable fit (Fig. 4) and is available in the R-script at https://osf. 
io/w73xj/. 

Next, based on this approximate power-analysis, we calculated the 
power-surface as a function of sample- and effect-size (Fig. 5). It appears 
that approximately N = 80 subjects per group would be required to 
achieve 80% power for the same effect size we measured previously (the 
intersection of the black and the first white line). 

Since we decided not to exceed a maximum of Nmax = 50 subjects per 
group for practical reasons, we investigated power for N = 50 in more 
detail by plotting power as a function of standardized regression coef-
ficient (Fig. 6). For a real effect-size that is as large as measured in our 
previous study (b = − .23), we have approximately 62% power to 
detect it. We have still an even chance to detect effect-sizes of b < − .19. 
To achieve 80 and 90% power, the real effect-size would have to be b =

− .29 and b = − .35, respectively. As the sample-size required to achieve 
80% power in all our target analyses exceeds our pre-specified Nmax =

50 per group, we decide to collect data until 100 valid datasets (N = 50 
per group) have been accumulated. 

2.9. Exploratory analyses 

In addition to providing a direct replication of Boayue et al. (2020) as 
formulated in the four pre-registered hypotheses specified above, we 
extended the study protocol in a more exploratory manner to get a better 
understanding of the neural mechanisms underlying these effects. These 
extensions, i.e., an additional experimental block featuring 
oddball-stimuli and the recording of pupillometry and EEG-data, did not 
interfere with the exact replication protocol. We consider our hypoth-
eses regarding these measures as exploratory and not part of the stricter 
pre-registration and therefore specified them more loosely. 

2.9.1. Prolonged effects 
Modulatory effects on cortical excitability induced by tDCS are 

assumed to outlast the duration of the actual stimulation. We therefore 
hypothesized that the effect of real HD-tDCS on MW would persist even 
after stimulation has ended. Hence, we hypothesized that the effect 
would be unchanged in the final (offline) block. Concretely, when 
extending the pre-registered statistical model described above by 
including the third, offline block as an additional level in the Block 
variable, we hypothesized that the Group × Block interaction will be 
similar for the stimulation- and the offline-block. 

Fig. 3. Power-curves for the effects of BV, AE and BV × AE calculated based on 
the full posterior distribution. 

Fig. 4. Fit of the asymptotic exponential growth model to directly calculated 
power-curves. 
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2.9.2. Robustness of the effects to changes of the time-window preceding 
probes 

In order to test whether our results are sensitive to the choice of the 
pre-probe temporal window, we repeated the main ordered-probit 
regression analysis using a range of choices for this parameter. Specif-
ically, we compared the regression coefficients from models fitted to 
data extracted using 10, 15, 20 and 25 trials before each probe. 

2.9.3. Meta-analytic integration with Boayue et al. (2020) 
To draw empirical-based conclusions about our hypotheses, we 

wanted to quantify the total amount of evidence for the presence or 
absence of the effect of HD-tDCS on MW propensity provided by both the 
original study (Boayue et al., 2020) and our current study. A suitable 
approach to this is to combine the two datasets to calculate an estimate 
of the effect-size that maximizes precision (Braver et al., 2014). A pre-
requisite for that analytical strategy is that the two studies are homog-
enous so that they can be assumed to measure the same effect. The 
target-effect in our study was a (negative) coefficient in a Bayesian hi-
erarchical ordinal regression model and no standard measure of het-
erogeneity exists for that situation. 

We therefore pursued the following strategy to ensure homogeneity 
of the studies. First, we compared the baseline sessions of the two studies 
to ensure that any incidental differences between the two studies (see 
section 2.7) did not result in significant differences in behavior. Spe-
cifically, we contrasted self-reported MW, AE and BV between the two 
sessions using side-by-side comparisons and, more formally, by imple-
menting an ordinal regression model which included interaction terms 
with a study-level covariate coding from which study a datapoint orig-
inated. In case the 95% HDI of any of these coefficients excludes zero, we 
can conclude that the effects between the studies are heterogenous. It is 
important that these blocks were comparable as our main outcome was a 
within-subject effect between baseline and stimulation block and 
therefore, it could have been strongly affected by performance in the 
baseline block. Comparability between the two baseline blocks allowed 
us to proceed with merging the previous dataset of N = 60 from Boayue 
et., al (2020) with the current data, reaching a total sample size of N =
160 (N = 80 per HD-tDCS condition). We repeated the ordered probit 
regression analysis detailed above on this full sample, adding group- 
level covariates coding for the study and possible interactions with the 
other variables. 

2.9.4. Pupillometry 
As described above, we extracted tonic and phasic pupil dynamics for 

single trials using both traditional methods (i.e., using average pupil 
diameter (PD) in pre-stimulus and post-stimulus time-windows) and an 
experimental tonic- and phasic estimation algorithm (Mittner, 2020). 
We tested the hypothesis that switches between on-task and MW periods 
are accompanied by transient increases in tonic (baseline) pupil size. 
Given the fast pace of our experimental task, we assumed that the 
traditional method would be ineffective in extracting valid baseline 
measures due to a build-up of the pupillary responses to stimuli. Hence, 
we hypothesized that the observed relationship would be stronger for 
the estimation algorithm compared to traditional averaging across the 
pre-stimulus window. In addition, we hypothesized that tap-associated 
pupil responses would be larger when being on-task or in periods of 
high AE, both indicating periods of task engagement that should evoke 
stronger stimulus-related pupillary responses. Similar as for the baseline 
PD, we quantified the phasic responses using both a traditional aver-
aging and our estimation algorithm and assumed a stronger relationship 
for the latter. 

2.9.5. EEG 
We were interested in comparing MMN amplitudes from the offline 

block between the two experimental groups. Since we expected to find 
increased MW propensity in the offline block following sham HD-tDCS, 
this group was also expected to show reduced neural responses to 
oddball stimuli, supporting the perceptual decoupling account of MW 
(Braboszcz and Delorme, 2011; Groot et al., 2021; Smallwood and 
Schooler, 2015). Conversely, real HD-tDCS was expected to result in 
enhanced MMN amplitudes, indicating a more alert task-focus state, and 
more efficient detection of unpredictable external events. 

Fluctuations in occipital alpha power were also compared between 
blocks (baseline vs. offline) and groups (real vs. sham HD-tDCS). We 
hypothesized that MW reports would be accompanied by stronger oc-
cipital alpha power (Braboszcz and Delorme, 2011; Macdonald et al., 
2011; O’Connell et al., 2009), and therefore, we also anticipated 

Fig. 5. Approximate power of the effect of HD-tDCS on mind wandering as a 
function of sample-size and effect-size. The solid, black line marks the previ-
ously measured effect-size, the dashed line is our maximum sample size of N =
50 per group. The white isolines show regions of 80 and 90 percent power. 

Fig. 6. Power of the effect of HD-tDCS on mind wandering for N = 50.  
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enhanced alpha activity in the offline vs. the baseline block (repre-
senting the neural correlate of the well-established time-on-task effect of 
MW frequency). With respect to our hypothesis regarding HD-tDCS ef-
fects, we also expected a more modest increase in alpha power from the 
baseline to the offline block in the real HD-tDCS group, compared to the 
sham group. Similarly, the sham HD-tDCS group was expected to show 
more prominent alpha activity in the offline block, being indicative of 
more frequent attentional lapses and MW reports. 

Furthermore, as midfrontal theta power (MFT) is thought to reflect 
neural activity associated with executive control (Cavanagh and Frank, 
2014), we expected MFT and the generation of random sequences to be 
correlated throughout the task on a single trial level. Next, we wanted to 
compare changes in MFT between blocks and HD-tDCS conditions. Even 
though response randomness (quantified by AE) did not change over the 
task and was not influenced by HD-tDCS in our previous study (Boayue 
et al., 2020), we expected MFT to be increased in the real vs. sham 
stimulation group in the offline block. This hypothesis was based on 
empirical evidence regarding the involvement of executive processes in 
the onset and maintenance of MW episodes (Christoff et al., 2016; 
Smallwood et al., 2012). In particular, both the EFf and EFu accounts of 
MW posit that less executive resources are directed to the external task 
while being engaged in MW, and therefore, response-locked midfrontal 
theta should be weaker following sham HD-tDCS, characterized by more 
frequent MW. Thus, we argued that midfrontal theta may be a more 
sensitive marker for task-oriented executive resources than AE itself and 
could provide important insights into the MW-EF relationship. 

Finally, we wanted to calculate mean MFT across the 25 trials pre-
ceding each thought probe. These values were used as outcome variable 
to assess their relationship to time-on-task (Block: baseline vs. offline), 
mental state (State: MW vs. on-task), HD-tDCS (Group: real vs. sham) 
and their interactions. We hypothesized that the negative association 
between MW and AE (see pre-registered hypotheses, section 2.8.1) 
would be accompanied by a negative MW-MFT relationship. In addition, 
the negative MW-MFT association was anticipated to be enhanced in the 
offline block in participants receiving real HD-tDCS, which would pro-
vide support for the EFf view of MW (i.e., the “gatekeeper” function of 
the executive system to prevent intrusive MW episodes becomes more 
prominent following DLPFC stimulation). 

3. Results 

3.1. Demographics 

Our sample consisted of 100 participants (54 females), aged 18–36 
years (mean age = 24.58). Due to our inclusion criteria, there were no 
excluded datasets. In total eight participants had to be replaced. Seven of 
these were replaced immediately during data collection, and one 
participant had to be replaced after data inspection. Out of the seven 
participants who were replaced during data collection, two participants 
failed to provide complete dataset due to lack of responses to target 
stimuli, four participants were accidently tested with the incorrect 
protocol, or the incorrect protocol sequence was run, and one partici-
pant was familiar with the study protocol and hypothesis from an earlier 
study. Additionally, four participants had problematic data (almost 
twice as many taps as required, only responding “completely-on task” on 
all probes, pressing too few keys, or only pressing the same key). Out of 
those we decided that only one participant could be excluded based on 
pre-registered criteria (failure to provide a complete dataset due to not 
responding to target stimuli). The full dataset, as well as all eight 
excluded subjects are available on OSF (https://osf.io/cv24f/). 

3.2. Effect of HD-tDCS stimulation on mind wandering 

3.2.1. Pre-registered hypotheses 
According to our pre-registration, we used an ordinal regression 

model that included AE, BV, their interaction, Trial (probe number), 

Block (baseline vs. stimulation), Group (sham vs. real stimulation) and 
their interaction to analyze the responses to the thought-probes. The 
model yielded an adequate fit to the data, R2

bayes = 0.35. 
There was no difference between the two groups in the baseline 

block (b = − 0.05 [− 0.35, 0.23], ER- = 1.54) in terms of self-reported 
MW. We confirmed our hypotheses that BV would be increased prior 
to self-reports of mind wandering when compared to on-task periods (b 
= 0.19 [0.14, 0.24], ER+ = ∞) and that the utilization of executive re-
sources measured by AE would be reduced prior to mind wandering (b =
− 0.07 [− 0.11, − 0.03], ER- = 362.64). However, we did not find any 
evidence for the expected positive interaction between BV and AE (b =
0.00 [− 0.03, 0.04], ER+ = 1.36). Finally, and most importantly, we did 
not find any effect on the propensity to mind wander in the real relative 
to the sham stimulation group during the stimulation block of the 
experiment (b = 0.00 [− 0.19, 0.19], ER- = 1.01). 

Note: The reported R2 is based on the “bayes_R2” function in the 
brms package in R, where predictors are treated as continuous variables. 

3.2.2. Time on task, prolonged stimulation, and other task effects 
Furthermore, as expected, we found strong evidence for the well- 

known time-on-task effect on mind wandering, i.e., increased mind 
wandering as task duration increases. This effect manifested both within 
each individual block and, on a longer timescale, across blocks. 
Compared to baseline, we found increased mind wandering in the 
stimulation block (b = 0.27 [0.13, 0.40], ER+ = 1332.33) and we also 
found a positive effect of Trial within-blocks (b = 0.81 [0.68, 0.95] ER+

= ∞). 
To investigate potential prolonged stimulation effects (“offline” ef-

fects), we refit the model with inclusion of the offline block. We 
observed almost no changes to the regression coefficients reported 
above when adding the offline block to the analysis (BV; b = 0.21 [0.17, 
0.26], ER+ = ∞, AE; b = − 0.07 [− 0.1, − 0.03], ER- = 665.67, BV × AE; b 
= 0.00 [− 0.03, 0.04], ER+ = 1.41). There was no change in self-reported 
MW propensity between the sham and the real stimulation group in the 
offline block when compared to baseline (b = 0.00 [− 0.22, 0.21], ER- =
1.05), indicating that there was no evidence for an effect of HD-tDCS on 
MW propensity in our experiment. The time on task effect estimated by 
this model was slightly stronger (stimulation block, b = 0.24 [0.09, 
0.38], ER+ = 306.69, offline block, b = 0.24 [0.10, 0.40], ER+ = 265.67, 
probe number b = 0.91 [0.78, 1.04], ER+ = ∞). 

3.2.3. Robustness to changes in time-window preceding probes 
Next, we rerun the above model (including only baseline and stim-

ulation blocks) for varying values of the nback parameter that indicates 
how many trials before each probe were used to calculate AE and BV. 
Adjusting this parameter did not change the qualitative effects of BV and 
AE on MW propensity. However, consistent with Boayue et al. (2020), 
the magnitude of the effects for AE and BV was increasing with the 
number of trials included (Fig. 7). Specifically, the effect of increased 
MW with increased BV was weakest for nback = 10 (b = 0.0932 [0.0422, 
0.142]) and strongest for nback = 25 (b = 0.191 [0.135, 0.247]) and the 
effect of decreased MW with increased AE was weakest for nback = 10 (b 
= − 0.051 [− 0.0982, − 0.0039]) and strongest for nback = 25 (b =
− 0.072 [− 0.122, − 0.0236]). 

3.2.4. Meta-analytic integration with Boayue et al. (2020) 
Before integrating our dataset with the original dataset collected in 

Boayue et al. (2020), we compared the baseline blocks of both studies to 
test whether there were major differences between the two studies. For 
that purpose, we fit a hierarchical ordered probit model to the dataset 
combining the baseline blocks from both studies and included BV, AE, 
Trial, and Study as variables. The Study variable was allowed to interact 
with all other variables to determine whether any of the observed re-
lationships between MW and the predictor variables were different be-
tween the two studies. We found that none of the 95% HDIs of the 
coefficients representing interactions with the study variable excluded 

A. Alexandersen et al.                                                                                                                                                                                                                         

https://osf.io/cv24f/


Neuroimage: Reports 2 (2022) 100109

11

zero (Study × BV: b = − 0.11 [− 0.28, 0.05], Study × AE: b = 0.04 
[− 0.10, 0.18], Study × Trial: b = 0.53 [− 0.37, 1.42], Study × AE × BV: 
b = − 0.03 [− 0.17, 0.10]) and we therefore conclude, per our 
pre-registered criterion, that the two baseline blocks were comparable. 
However, when comparing the coefficient estimates from independent 
models for the two studies side-by-side (Fig. 8), we noted some dis-
crepancies (most notably a reduced coefficient for BV, and an increased 
time-on-task effect in Boayue et al., 2020; BVAlexandersen: b = 0.11 
[− 0.002, 0.22], BVBoayue: b = − 0.003 [− 0.12, 0.11], TrialAlexandersen: b 
= 1.73 [1.21, 2.26], TrialBoayue: b = 2.39 [1.65, 3.14]) though these 
were not strong enough to trigger our pre-registered criteria. 

Therefore, we combined the two datasets to reach the full sample of 
N = 160 and re-ran the original model while allowing all predictors 
besides block and group to interact with Study. Based on that analysis, 
the 95% HDI of the effect of HD-tDCS on MW did not exclude zero (b =
− 0.08 [− 0.22, 0.06]) indicating that the stimulation effect on MW 
propensity disappeared when looking at all of the available data com-
bined. The combined estimates for the remaining predictors were in line 
with our previous results (BV: b = 0.20 [0.14, 0.26], AE: b = − 0.07 
[− 0.13, − 0.02], Trial: b = 0.87 [0.71, 1.03], Block: b = 0.25 [0.12, 
0.37]). Regarding the interactions of these predictors with the Study 
variable, the 95% HDI of the coefficient for BV excluded zero (Study x×

BV: b = − 0.10 [− 0.18, − 0.02]) while the remaining coefficients did not 
(Study × AE: b = − 0.05 [− 0.13, − 0.04], Study × Trial: b = 0.03 [− 0.23, 
0.28], Study × BV × AE: b = 0.03 [− 0.04, 0.10]). 

3.3. Blinding 

To assess whether participants were successfully blinded with 
respect to HD-tDCS condition, we compared the two groups in their 
scores on a 7-point Likert scale asking whether they believed they 
received real stimulation or not. We performed a two-sided Bayesian 
Mann-Whitney test which supported the null hypothesis (BF01 = 4.16), 
providing evidence that participants were successfully blinded to real 
versus sham stimulation. The distributions depicted in Fig. 9 even show 
a slight tendency for the opposite effect. 

3.4. EEG 

3.4.1. Mismatch negativity 
As anticipated, we observed a reliable mismatch negativity to the 

oddball stimuli. Specifically, we found an oddball-standard difference 
waveform of negative polarity peaking between 120 and 300 ms at 
electrode Fz, and reversed polarity at posterior-inferior electrodes POz 

Fig. 7. Coefficient estimates using different numbers of trials (nback) before each probe.  

Fig. 8. Comparison of the coefficients in Boayue et al. (2020) and the present study in the baseline block using independent regression models. “Threshold1-3” 
represent the thresholds distinguishing between different responses on the Likert scale estimated in the hierarchical ordered probit model. 
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and Oz (Fig. 10A). To investigate whether HD-tDCS influenced the MMN 
amplitude in the offline block, we performed a one-tailed independent 
samples Bayesian t-test to assess the directional hypothesis that the 
MMN standard-oddball difference waveform at electrode Fz would be 
larger (more negative) following real stimulation. This assumed effect 
would indicate enhanced reactivity of the auditory system to salient, 

unexpected events, accompanying the anticipated reduction in MW 
propensity in the real HD-tDCS group. However, in line with the null- 
effect of HD-tDCS on probe responses, this analysis also favored the 
null hypothesis (BF01 = 12.048, Fig. 11A and C). 

3.4.2. Occipital alpha power 
To assess whether occipital alpha (8–12 Hz) power was indicative of 

MW, we performed a one-tailed Bayesian Wilcoxon signed-rank test 
(due to excess skewness and kurtosis in the data) to test whether alpha 
power was enhanced during MW vs. OT periods. The result supported 
the hypothesis that occipital alpha power preceding MW probes was 
stronger compared to OT probes (BF10 = 7.61, Fig. 10B). As the next 
step, we included data from all segments, not only those preceding 
thought probes to increase statistical power, and performed a Bayesian 
repeated-measures ANOVA on occipital alpha power with Block (base-
line vs. offline) as within-subject, and Group (real vs. sham HD-tDCS) as 
between-subject factor. We found strong evidence for the main effect of 
Block, indicating a time-on-task effect of enhanced alpha power in the 
final experimental block (BFincl = 5582.29). Crucially, the main effect of 
Group (BFincl = 0.38) and the interaction term (BFincl = 0.32) both 
favored the null hypothesis (Fig. 11B and D). 

3.4.3. Frontal midline theta power 
To assess whether MFT (4–8 Hz) power reflected the recruitment of 

executive control, we tested the directional hypothesis that MFT was 
stronger for high AE vs. low AE trials. For this purpose, we extracted 

Fig. 9. Distribution of self-reports to the blinding questionnaire between the 
two groups. 

Fig. 10. Preliminary checks for MMN, occipital alpha power, midfrontal theta power and evoked pupil dilation. A) Mismatch negativity waveform in the expected 
time-window (120–300 ms, highlighted with dashed vertical lines) on electrode Fz referenced to the signal from the mastoids (P9/P10), which switches polarity on 
electrode POz and Oz. B) Increased occipital alpha power (indicated with dashed vertical lines) preceding MW thought probes compared to probes where participants 
reported to be on-task. C) Enhanced MFT in the pre-stimulus time-window ([-500 ms, 0] ms) in the expected frequency range (4–8 Hz) for high entropy trials 
compared to low entropy trials (time-frequency area of interest highlighted with the dashed rectangle). D) Evoked pupil response (grand average of standardized 
pupil size across [-700, 800] ms window relative to metronome onset) to the standard metronome tones in each of the three blocks and to the oddball stimuli in the 
offline block. 
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MFT power in the [− 500,0] ms time-window preceding each motor 
response and performed a one-tailed Bayesian Wilcoxon signed-rank test 
(due to excessive skewness in the data). Our results support the antici-
pated effect (BF10 = 6.81, Fig. 10C). 

Next, we conducted a Bayesian repeated-measures ANOVA with 
Block (baseline vs. offline) as within-subject and Group (real vs. sham) 
as between-subject factors, including data from all trials. Our results 
reveal strong evidence for a main effect of Block (BFincl = 2524.00) 
indicating that MFT was increased in the offline relative to the baseline 
block. Importantly, even though we expected enhanced MFT power in 
the offline block following real stimulation, for both the main effect of 
Group and the Block × Group interaction, statistical evidence supported 
the null hypothesis (BFincl = 0.34 and BFincl = 0.21, respectively) see 
Fig. 12. 

As a final step, we extracted mean MFT power for the 25 trials pre-
ceding thought-probes, and conducted a Bayesian repeated-measures 
ANOVA with Block (baseline vs. offline) and State (on-task vs. MW) as 
within-subject, and Group (real vs. sham) as between-subject factors. 
Contrary to our hypotheses, we only found evidence for the main effect 
of Block (BFincl = 3.72 × 106), while other BFs for the main effects and 
all interactions supported the null hypothesis (State: BFincl = 0.18, 
Group: BFincl = 0.50, Block × State: BFincl = 0.20, Block × Group: BFincl 
= 0.21, State × Group: BFincl = 0.20, Block × State × Group: BFincl =

0.29). 

3.5. Pupillometry 

To further investigate the neurophysiological processes involved in 
MW, we assessed changes in pupil size during the FT-RSGT, by 
extracting stimulus-locked evoked pupil responses centered around the 
metronome sounds in all three experimental blocks (see Fig. 10D). 

3.5.1. Missing data 
We removed all trials in which more than 20% of the pupillometric 

signal was missing in the time-window used for extracting the single- 
trial measure. This resulted, on average, in the loss of 19.0% of the tri-
als (SD = 14.2%). When calculating per-probe pupillometric measures, 
we used the same window of preceding 25 trials as we did for the 
behavioral data. We excluded probes where more than 10 of the 25 trials 
before each probe were excluded because of missing data, resulting in 
the loss of 81 out of a total of 2920 trials. 

3.5.2. Comparison of the traditional and novel algorithm 
From the raw pupillometric time-series, we extracted per-trial mea-

sures of tonic and phasic activity using a traditional and our novel 
method (see section 2.6.1). The average correlation between traditional 
and novel estimates of tonic fluctuations in pupil size was very high (r =

0.99,SD = 0.07). In contrast, the correlation between the two methods 
for extracting pupillary responses to task events (phasic activity) was 

Fig. 11. A) MMN waveforms for the sham and real HD-tDCS groups, along with the sham-real difference waveform (black). B) Power spectra for the sham and real 
HD-tDCS groups, along with the sham-real difference trace. Vertical dashed lines represent the time window (A) and the frequency range (B) of interest. C) Individual 
MMN amplitudes and D) posterior alpha power values for the two groups with corresponding boxplots and density plots. 
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much smaller (r = 0.22,SD = 0.25). This reflects the way in which the 
novel algorithm enforces the tonic estimate to be a lower envelope of the 
pupillometric signal, therefore affecting mostly the transient phasic 
signal. 

3.5.3. Pupil responses and mind wandering 
In order to investigate the relationship between tonic and phasic 

pupillary dynamics and MW, we conducted two separate hierarchical 
ordered probit regression models (one for the traditional and one for the 
novel estimation algorithm) with MW as the dependent variable. As 
predictors, we included tonic and phasic pupil (and their interaction) as 
well as trial number, experimental block (baseline, stimulation, offline) 
and their interaction. The overall Bayesian R2 for the two models was 
R2 = 0.29 (traditional) and R2 = 0.30 (novel). 

Contrary to our expectations, larger tonic pupil size was associated 
with decreased MW (b = − 0.08[ − 0.14, − 0.01], traditional estimate: 
b = − 0.05[ − 0.11, 0.02]) and larger phasic pupil responses were 
associated with increased MW (b = 0.14[0.01,0.27], traditional: b =

0.05[ − 0.24,0.33]), even though both effects were only evident in the 
model based on features extracted using the novel algorithm. In addi-
tion, we observed a tonic × phasic interaction effect (b = 0.16[0.001,

0.32], traditional: b = 0.02[ − 0.39, 0.43]), suggesting that the rela-
tionship between phasic pupil responses and MW was dependent on 
changes in tonic pupil size. Specifically, for high tonic levels (mean + 2 
× SD), the relationship between phasic pupil-reponse and MW was 
strongly positive (b = 0.31[0.06, 0.55]), for mean tonic levels weakly 
positive (b= 0.1[− 0.02,0.12]), and zero for low tonic levels (mean – 2 ×
SD, b = − 0.11[ − 0.34,0.12]). 

As before, the effect of trial number on MW was positive 
(b = 0.07[0.04, 0.10], traditional: b = 0.07[0.04,0.10]). In addition, MW 
was increased during the stimulation block (b = 0.37[0.14, 0.60], 
traditional: b = 0.37[0.14, 0.60]) but not during the final offline block 
(b = 0.09[ − 0.17,0.36], traditional: b = 0.08[ − 0.18,0.33]). The effect 
of trial number on MW was reduced during the stimulation block 
(b = − 0.03[− 0.06, − 0.0002], traditional: b = − 0.03[ − 0.06, −

0.0007]) but unaffected during the offline block (b = 0.02[ − 0.02,0.07], 
traditional: b = 0.03[ − 0.01,0.07]). 

3.5.4. Pupil response and HD-tDCS 
To test whether the pupillary measures were affected by real vs. 

sham stimulation, we conducted separate Bayesian hierarchical linear 
regression models with tonic and phasic pupil as dependent variables. 

Fig. 12. MFT burst preceding motor responses (at stimulus onset, 0 ms) for A) baseline and B) offline blocks, for the two groups, and for the sham-real HD-tDCS 
group difference (dashed rectangles represent the time-frequency area of interest). C) Individual MFT power data for the two groups and blocks (left: baseline block, 
right: offline block), with corresponding boxplots and density curves. 
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We used Trial, Block, Group, and their interactions as predictors. The 
resulting coefficient estimates for the four models are presented in 
Fig. 13. While the results for the traditional and novel analysis for the 
tonic pupillary levels are very similar (as expected based on their high 
correlation), the phasic response as extracted from the two algorithms 
show very different signatures. 

With increasing trial number, tonic pupil dilation was reduced (b =

− 0.063 [ − 0.085, − 0.040], traditional: b = − 0.052 [ − 0.076, −

0.030]). In addition, during the longer stimulation block, tonic pupil 
was reduced (b = − 0.27 [ − 0.44, − 0.10], traditional: b = − 0.236 [ −
0.41, − 0.067]) but not during the final offline block that included 
oddball stimuli (b = 0.036[− 0.16,0.241], traditional: b = 0.046[ −
0.152,0.246]). There was no difference between the sham and the real 
groups with regards to tonic pupil dilation (b = − 0.15[− 0.34,0.052],
traditional: b = − 0.081[ − 0.28,0.12]) and the difference in tonic levels 
between baseline and stimulation block was not affected by real stim-
ulation either (b = 0.029[ − 0.21, 0.27], traditional: b = − 0.022[ −
0.26,0.22]). The same was true for the offline block: The change in tonic 
pupil size from baseline to the last offline block was not affected by real 
stimulation (b = 0.036[ − 0.25, 0.32], traditional: b = − 0.008[ −
0.071,0.057]). During the stimulation block, the effect of trial number 
was reduced (b = 0.056[0.032, 0.080], traditional: b = 0.047[0.023,
0.071]) but that effect was not influenced by whether the stimulation 
was sham or real (b= − 0.010[− 0.044,0.025], traditional: b = 0.001[ −
0.033,0.034]). During the offline block, the effect of trial number was 
unchanged relative to baseline (b = − 0.002[ − 0.035, 0.029], tradi-
tional: b = − 0.007[ − 0.040, 0.025]) and unaffected by sham vs. real 
stimulation (b = 0.016[− 0.028,0.062], traditional: b = 0.028[ − 0.018,
0.073]). 

With respect to the phasic pupillary response, the results from the 
traditional algorithm are inconclusive because none of the coefficients’ 
HDIs excluded zero (Fig. 13). With respect to the results from the novel 
algorithm, the phasic pupillary response decreased with increasing trial 
number (b= − 0.014[− 0.027, − 0.002]) and also during the stimulation 
block compared to baseline (b= − 0.11[− 0.20, − 0.011]) but not in the 
offline block (b = − 0.092[ − 0.20, 0.021]). However, the negative 
relationship between phasic pupil responses and trial number was 
reduced during the stimulation block (b= 0.018[0.004, 0.031]) and 
during the offline block (b = 0.019[0.000,0.036]). Real stimulation did 
not affect the phasic response (b= 0.012[− 0.11,0.130]) and the 
decrease in phasic pupil response from baseline to the stimulation block 
(b= 0.060[− 0.077,0.20]) and from baseline to offline block 
(b= 0.034[− 0.13,0.19]) were also unaffected by real stimulation. 
Finally, real stimulation did not change the effect of trial number in 
either baseline block (b = 0.000[ − 0.017, 0.019]), stimulation block 

(b= − 0.009[− 0.028,0.010]), or offline block (b = − 0.004[ − 0.029,
0.021]). 

3.5.5. Pupil responses and approximate entropy 
Finally, we investigated whether the tonic and phasic pupil dynamics 

were related to the AE of the sequence calculated over a 25-trial window 
backwards in time. For that purpose, we calculated four separate 
Bayesian hierarchical linear models with AE as dependent variable. Each 
model had a single predictor (tonic and phasic pupil, each measured 
using the traditional and the novel approach) and included random in-
tercepts and slopes at the subject level. Tonic pupil was not related to AE 
(b = − 0.012[ − 0.069, 0.042], traditional: b = − 0.006[ − 0.063,
0.052]). The direction of the relationship between AE and phasic pupil 
responses was as expected, indicating increased phasic pupil responses 
during periods of high AE, but the 95% HDI did not exclude zero (b =

0.064[ − 0.030,0.16], traditional: b = − 0.016[ − 0.241,0.204]). 

4. Discussion 

The main goal of the current study was to replicate the effect that 
MW propensity can be reduced by HD-tDCS of the left DLPFC reported 
by Boayue et al. (2020) using a high-powered, pre-registered protocol. 
However, we found that HD-tDCS did not reduce or otherwise affect the 
propensity to MW in our study. There was no evidence for a difference in 
MW propensity between the real vs. sham groups during the stimulation 
block, nor a prolonged effect of real HD-tDCS in the offline block. To 
include all available evidence for the effectiveness of HD-tDCS on 
manipulating MW propensity, we performed a meta-analytic integration 
of the present study and Boayue et al. (2020), reaching a total sample 
size of N = 160. Unsurprisingly given the results of our high-powered 
study, the combined analysis also failed to show an effect of HD-tDCS 
on the propensity to MW. We therefore conclude that the earlier 
finding by Boayue et al. (2020) was most likely a statistical fluke and 
that it is not possible to modulate the propensity of MW using HD-tDCS 
with our proposed protocol. 

The sobering experience from the current study highlights the ne-
cessity of pre-registration of studies utilizing HD-tDCS - and non- 
invasive brain stimulation methods more broadly - to affect cognitive 
functions. We believe that the study by Boayue et al. (2020) was 
methodologically advanced relative to most other studies in the field: 
They used a within-subject repeated-measures design (comparison 
against individual baselines), a highly sensitive task and analysis 
method, a state-of-the-art stimulation protocol which ensured a properly 
double-blinded application of the stimulation, and a substantial 
sample-size. In addition, they established analytical choices for the 

Fig. 13. Predictors and coefficients from the traditional and novel algorithm from the four Bayesian hierarchical linear regression models, with tonic (left) and phasic 
(right) pupil responses as dependent variables. 
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HD-tDCS dataset based on pilot experiments that did not include brain 
stimulation to reduce the risk of confirmatory bias and to limit re-
searchers’ degrees of freedom. Furthermore, even though they did not 
pre-register their final analysis pipeline, the analyst was blinded against 
the coding of the group variable (i.e., the analyst completed the analysis 
using arbitrary labels for sham vs. real stimulation groups). Despite 
these cautious measures that are far from the standard in the field, the 
authors detected an effect of the stimulation on MW propensity and only 
the careful replication with pre-registered methods reported here was 
able to convincingly show that this effect is not actually real. We 
therefore argue that the evidential value of studies reporting a positive 
effect of tDCS on MW, unless validated by a rigorous, pre-registered 
replication, is very low. 

In part, this discouraging conclusion may be accounted for by a 
glaring need for improved NIBS methods compared to standard methods 
applied in most studies to date. First, even though the growing number 
of studies applying HD-tDCS protocols is a step in the right direction to 
increase focality of the stimulation, between-subject variability in brain 
anatomy may counteract that positive development, i.e., a more focal 
stimulation method applied at a similar scalp location may target 
different underlying cortical areas in different participants. A possible 
way forward could be to embrace prospective electric field modelling for 
individual participants (Evans et al., 2020; Rasmussen et al., 2021) 
which would allow to individually place stimulation electrodes to target 
the same underlying brain areas. Second, all studies in the field so far 
(including our own) rely on introspective thought-probes to quantify 
MW. The inherently subjective nature of this measure, which may be 
affected by a wide variety of nuisance variables, makes it a “moving 
target” for any interventional method, including NIBS. One way forward 
may be to rely more on objective behavioral or neurophysiological 
measures such to eliminate the need for thought probes altogether 
(Groot et al., 2021; Kucyi et al., 2017). 

Our proposed behavioral task, the FT-RSGT, seems to be well-suited 
for the purpose of providing more objective measures of MW as it pro-
vides two relevant behavioral indices, AE and BV, at high temporal 
resolution and can be readily combined with neural measures. Our study 
confirmed the expected relationship between these indices and MW, 
where BV was increased, and AE reduced during periods of MW. The FT- 
RSGT also captures well-known task markers such as time on task ef-
fects, both between and within blocks, providing solid evidence of the 
robustness of the FT-RSGT how the high temporal nature of the task 
gives reliable behavioral manifestations of MW. Additionally, we could 
not replicate the predicted AE × BV interaction. We are therefore forced 
to disconfirm our previous speculation that this interaction may repre-
sent different manifestations of MW (Boayue et al., 2020; Mittner et al., 
2016). 

We extended the study with pupillometric measures in order to 
investigate the relationships between dynamic changes in phasic and 
tonic pupil size and MW that have been hypothesized to be related to 
MW (Mittner et al., 2016). Specifically, we hypothesized that switches 
between on-task and MW periods would be accompanied by transient 
increases in tonic pupil size (baseline PD), and that phasic pupil re-
sponses would be stronger during periods of on-task or high AE. Con-
trary to our expectations, we found that MW was associated with 
decreases in tonic pupil size. This suggests that as participants disen-
gaged from the finger-tapping task, tonic norepinephrine was reduced, 
whereas during periods of on-task focus, tonic levels increased. Previous 
studies regarding the relationship between tonic pupil size and MW have 
reported inconsistent results (Grandchamp et al., 2014; Groot et al., 
2021; Jubera-García et al., 2020; Konishi et al., 2017) indicating that 
this relationship is possibly dependent on specific task effects. The 
current results add support to the findings from a recent fMRI study 
employing the same task (FT-RSGT), which also found a negative rela-
tionship between tonic pupil and MW (even though their HDI did not 
exclude zero and the effect was therefore considered inconclusive; Groot 
et al., 2022). 

Surprisingly, we observed increased phasic pupillary responses to 
task events associated with periods of MW, contradicting previous 
findings and the established theory that periods of task disengagement 
coincide with perceptual decoupling (Smallwood et al., 2012; Unsworth 
and Robison, 2018). One possible explanation is that the stimuli them-
selves are not particularly task-relevant in the FT-RSGT (only their 
timing is). As a consequence, during periods of strong task-focus, 
perhaps the processing of the stimulus was inhibited in order to sup-
press distractions from the internal calculation of the entropy. Our 
analysis furthermore revealed that the dependence between phasic pupil 
and MW was dependent on levels of tonic pupil size, showing that the 
positive relationship between phasic responses and MW was strongest 
when tonic pupil size was high, but diminished when tonic pupil size 
was low. This might indicate that the low-tonic mode was associated 
with reduced alertness (Unsworth and Robison, 2018), thereby leveling 
out any relationship between MW and phasic responses (which are also 
expected to be reduced during low tonic activity). 

Furthermore, we explored whether changes in tonic and phasic pupil 
size would be related to improved task performance in terms of AE. The 
results show that although phasic responses were positively related to 
AE, the HDIs for neither tonic nor phasic predictors excluded zero and 
therefore these effects are considered inconclusive and require targeted 
follow-up studies to be established. 

Finally, we also sought to investigate whether our novel algorithm 
would result in more valid pupil features, given the fast-paced nature of 
our task and the expected build-up in pupil dilation that complicates 
reliable estimation of both tonic and phasic changes in pupil size. While 
the correlation between tonic (baseline) pupil size extracted using 
traditional and novel methods was high, phasic pupil responses extrac-
ted using the novel estimation algorithm differed from those using the 
traditional averaging method. In addition, most of the reported effects, 
for example the relationship between phasic responses and MW, were 
only evident when using pupillary features estimated with the novel 
algorithm. We therefore conclude that our novel approach was able to 
account for the sluggish response of the pupil to events and to isolate 
temporally precise effects in our fast-paced task. 

By analyzing EEG data, our primary aim was to find support for the 
expected effect of HD-tDCS on the neural level, by clarifying whether 
modulation of MW by real stimulation is accompanied by changes in the 
MMN, posterior alpha power, MFT, or any combination thereof. While 
we were only able to collect data from 8 electrodes, we found multiple 
well-known neurophysiological markers associated with MW, executive 
control and sensory prediction errors. In accordance with the perceptual 
decoupling theory (Braboszcz and Delorme, 2011), we hypothesized 
that we would find reduced MMN amplitude during periods of higher 
MW propensity following sham HD-tDCS. However, in line with the 
behavioral null-effect, we did not see any group difference in the MMN 
in the offline block. This result does not preclude that MMN is not a 
sensitive neurophysiological marker of MW, but in the context of 
non-invasive brain stimulation, more potent protocols are warranted to 
clarify if changes in MW are associated with reduced neural sensitivity 
to unexpected and salient sensory events. The null-effect is not only 
interesting from the MW perspective, but also because frontal tDCS 
could theoretically influence MMN more directly via changing excit-
ability in its frontal generators (Chen et al., 2014; Weigl et al., 2016). 
However, even with our HD-tDCS protocol, we did not observe any in-
fluence of HD-tDCS on the MMN. 

Given that occipital alpha power is an established marker for MW 
(Hawkins et al., 2015), we expected and found increased alpha-band 
activity preceding thought probes where participants reported to be 
engaged in MW when compared to being on-task. Additionally, we 
found that occipital alpha power showed a clear time-on-task effect, 
being larger in the offline vs. baseline block. In line with our finding on 
the null-effect of HD-tDCS on MW, we found no difference in occipital 
alpha power between the real and sham stimulation groups in the crucial 
offline block. 
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Additionally, we found the anticipated effect of MFT being enhanced 
preceding high AE responses compared to low AE responses. This pro-
vides further evidence that MFT is a marker for increased task perfor-
mance in the FT-RSGT, and the relationship between MFT and AE 
indicates that MFT can be regarded as a neural index of implementing 
executive control (Cavanagh and Frank, 2014). Again, in line with the 
behavioral results, HD-tDCS did not influence MFT, as there was no 
noticeable difference between the real and sham groups. However, 
while these results are in line with HD-tDCS not influencing 
self-reported task focus, it is quite surprising that real stimulation above 
the left DLPFC did not modulate MFT or AE, since this region has been 
closely associated with executive control (Royall et al., 2002). We also 
expected to observe reduced MFT as task duration increases, as partic-
ipants would get more tired and shift to MW more frequently. Instead, 
we found a strong effect in that MFT was increased in the offline block 
compared to both baseline and stimulation blocks. Possible explanations 
could be that as task duration increased, participants become more tired, 
and a compensatory increase in MFT power could reflect efforts in an 
attempt to stay awake and focused on the task (Klimesch, 1999; Strijk-
stra et al., 2003) While we observed an increase in MFT as task duration 
increased, this did not manifest in self-reports of being focused on the 
task, suggesting that merely recruiting MFT to “fight” inattentiveness 
was not sufficient to perform well. 

Alternatively, stronger MFT power in the offline block could have 
been due to the oddball stimuli. We observed stronger increase in MW in 
the stimulation block compared to the offline block (relative to base-
line), therefore it is possible that the oddballs might have increased 
alertness (in line with the phasic pupil effect), and this task-unspecific 
alerting (tones were not related to the primary AE-focused task) could 
have improved the recruitment of executive resources, manifesting in 
stronger MFT. 

In sum, we did not observe any effect of HD-tDCS on MW or any of 
our behavioral or neural measures. However, we found stable and robust 
behavioral markers for MW reflected in the FT-RSGT. We verified the 
association between occipital alpha power and MW, as well as the 
relationship between MFT and executive control. Finally, we provided 
novel insights into the link between tonic/phasic pupil responses and 
MW, indicating that the direction of the association is vulnerable to task- 
effects, and might be influenced by changes in general arousal. 
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Koch, G., Langguth, B., Nyffeler, T., Garcia-Larrea, L., 2014. Evidence-based 
guidelines on the therapeutic use of repetitive transcranial magnetic stimulation 
(rTMS). Clini. Neurophysiol. 125 (11), 2150–2206. https://doi.org/10.1016/j.clinph 
.2014.05.021. 

Liddell, T.M., Kruschke, J.K., 2018. Analyzing ordinal data with metric models: what 
could possibly go wrong? J. Exp. Soc. Psychol. 79, 328–348. https://doi.org/ 
10.1016/j.jesp.2018.08.009. 

Macdonald, J.S.P., Mathan, S., Yeung, N., 2011. Trial-by-trial variations in subjective 
attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Front. 
Psychol. 2, 82. https://doi.org/10.3389/fpsyg.2011.00082. 

Mathôt, S., 2013. A Simple Way to Reconstruct Pupil Size during Eye Blinks. https://doi. 
org/10.6084/M9.FIGSHARE.688001.V1 (Version 1). Figshare.  

McVay, J.C., Kane, M.J., 2009. Conducting the train of thought: working memory 
capacity, goal neglect, and mind wandering in an executive-control task. J. Exp. 
Psychol. Learn. Mem. Cognit. 35 (1), 196–204. https://doi.org/10.1037/a0014104. 

McVay, J.C., Kane, M.J., 2010. Does mind wandering reflect executive function or 
executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). 
Psychol. Bull. 136 (2), 188–207. https://doi.org/10.1037/a0018298. 

Mittner, M., 2020. pypillometry: a Python package for pupillometric analyses. J. Open 
Source Software 5 (51), 2348. https://doi.org/10.21105/joss.02348. 

Mittner, M., Boekel, W., Tucker, A.M., Turner, B.M., Heathcote, A., Forstmann, B.U., 
2014. When the brain takes a break: a model-based analysis of mind wandering. 
J. Neurosci. 34 (49), 16286–16295. https://doi.org/10.1523/JNEUROSCI.2062- 
14.2014. 

Mittner, M., Hawkins, G.E., Boekel, W., Forstmann, B.U., 2016. A neural model of mind 
wandering. Trends Cognit. Sci. 20 (8), 570–578. https://doi.org/10.1016/j. 
tics.2016.06.004. 

Morey, R.D., Rouder, J.N., 2015. BayesFactor: Computation of Bayes Factors for 
Common Designs. http://CRAN.R-project.org/. 

Ottaviani, C., Couyoumdjian, A., 2013. Pros and cons of a wandering mind: a prospective 
study. Front. Psychol. 4, 524. https://doi.org/10.3389/fpsyg.2013.00524. 

Nitsche, M.A., Paulus, W., 2001. Sustained excitability elevations induced by transcranial 
DC motor cortex stimulation in humans. Neurology 57 (10), 1899–1901. https://doi. 
org/10.1212/wnl.57.10.1899. 

O’Connell, R.G., Dockree, P.M., Robertson, I.H., Bellgrove, M.A., Foxe, J.J., Kelly, S.P., 
2009. Uncovering the neural signature of lapsing attention: electrophysiological 
signals predict errors up to 20 s before they occur. J. Neurosci.: Off. J. Soc. Neurosci. 
29 (26), 8604–8611. https://doi.org/10.1523/JNEUROSCI.5967-08.2009. 

Pachai, A.A., Acai, A., LoGiudice, A.B., Kim, J.A., 2016. The mind that wanders: 
challenges and potential benefits of mind wandering in education. Schol. Teach. 
Learn. Psychol. 2 (2), 134–146. https://doi.org/10.1037/stl0000060. 

Pincus, S.M., 1991. Approximate entropy as a measure of system complexity. Proc. Natl. 
Acad. Sci. Unit. States Am. 88 (6), 2297–2301. https://doi.org/10.1073/ 
pnas.88.6.2297. 

Pincus, Steve, Kalman, R.E., 1997. Not all (possibly) “random” sequences are created 
equal. Proc. Natl. Acad. Sci. Unit. States Am. 94 (8), 3513–3518. https://doi.org/ 
10.1073/pnas.94.8.3513. 

Pincus, S., Singer, B.H., 1996. Randomness and degrees of irregularity. Proc. Natl. Acad. 
Sci. Unit. States Am. 93 (5), 2083–2088. https://doi.org/10.1073/pnas.93.5.2083. 

Poerio, G.L., Sormaz, M., Wang, H.-T., Margulies, D., Jefferies, E., Smallwood, J., 2017. 
The role of the default mode network in component processes underlying the 
wandering mind. Soc. Cognit. Affect Neurosci. 12 (7), 1047–1062. https://doi.org/ 
10.1093/scan/nsx041. 

Rasmussen, I.D., Boayue, N.M., Mittner, M., Bystad, M., Grønli, O.K., Vangberg, T.R., 
Csifcsák, G., Aslaksen, P.M., 2021. High-definition transcranial direct current 
stimulation improves delayed memory in Alzheimer’s disease patients: a pilot study 
using computational modeling to optimize electrode position. J. Alzheim. Dis. 83 
(2), 753–769. https://doi.org/10.3233/JAD-210378. 

Royall, D.R., Lauterbach, E.C., Cummings, J.L., Reeve, A., Rummans, T.A., Kaufer, D.I., 
LaFrance Jr., Curt, W., Coffey, C.E., 2002. Executive control function. 
J. Neuropsychiatry 14 (4), 377–405. https://doi.org/10.1176/jnp.14.4.377. 

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., 
Gruber, W.R., Birbaumer, N., 2005. A shift of visual spatial attention is selectively 
associated with human EEG alpha activity. Eur. J. Neurosci. 22 (11), 2917–2926. 
https://doi.org/10.1111/j.1460-9568.2005.04482.x. 

Schooler, J.W., Mrazek, M.D., Franklin, M.S., Baird, B., Mooneyham, B.W., Zedelius, C., 
Broadway, J.M., 2014. Chapter one - the middle way: finding the balance between 
mindfulness and mind-wandering. In: Psychology of Learning and Motivation, vol. 
60. Academic Press, pp. 1–33. https://doi.org/10.1016/B978-0-12-800090-8.00001- 
9. 

Schwalm, M., Rosales Jubal, E., 2017. Back to pupillometry: how cortical network state 
fluctuations tracked by pupil dynamics could explain neural signal variability in 
human cognitive neuroscience. eNeuro 4 (6). https://doi.org/10.1523/ 
ENEURO.0293-16.2017. 

Seli, P., Cheyne, J.A., Smilek, D., 2013. Wandering minds and wavering rhythms: linking 
mind wandering and behavioral variability. J. Exp. Psychol. Hum. Percept. Perform. 
39 (1), 1–5. https://doi.org/10.1037/a0030954. 

Smallwood, J., Schooler, J.W., 2006. The restless mind. Psychol. Bull. 132 (6), 946–958. 
https://doi.org/10.1037/0033-2909.132.6.946. 

Smallwood, J., Schooler, J.W., 2015. The science of mind wandering: empirically 
navigating the stream of consciousness. Annu. Rev. Psychol. 66 (1), 487–518. 
https://doi.org/10.1146/annurev-psych-010814-015331. 

Smallwood, J., Brown, K., Baird, B., Schooler, J.W., 2012. Cooperation between the 
default mode network and the frontal–parietal network in the production of an 
internal train of thought. Brain Res. 1428, 60–70. https://doi.org/10.1016/j. 
brainres.2011.03.072. 

Stagg, C.J, Nitsche, M.A, 2011. Physiological basis of transcranial direct current 
stimulation. The Neuroscientist : a review journal bringing neurobiology, neurology 
and psychiatry, 17 (1), 37–53. https://doi.org/10.1177/1073858410386614. 

Strijkstra, A.M., Beersma, D.G.M., Drayer, B., Halbesma, N., Daan, S., 2003. Subjective 
sleepiness correlates negatively with global alpha (8–12 Hz) and positively with 
central frontal theta (4–8 Hz) frequencies in the human resting awake 
electroencephalogram. Neurosci. Lett. 340 (1), 17–20. https://doi.org/10.1016/ 
S0304-3940(03)00033-8. 

Teasdale, J.D., Dritschel, B.H., Taylor, M.J., Proctor, L., Lloyd, C.A., Nimmo-Smith, I., 
Baddeley, A.D., 1995. Stimulus-independent thought depends on central executive 
resources. Mem. Cognit. 23 (5), 551–559. https://doi.org/10.3758/BF03197257. 

Towse, J.N., 1998. On random generation and the central executive of working memory. 
Br. J. Psychol. 89 (1), 77–101. https://doi.org/10.1111/j.2044-8295.1998.tb02674. 
x. 

Turi, Z., Csifcsák, G., Boayue, N.M., Aslaksen, P., Antal, A., Paulus, W., Groot, J., 
Hawkins, G.E., Forstmann, B., Opitz, A., Thielscher, A., Mittner, M., 2019. Blinding is 
compromised for transcranial direct current stimulation at 1 mA for 20 min in young 
healthy adults. Eur. J. Neurosci. 50 (8), 3261–3268. https://doi.org/10.1111/ 
ejn.14403. 

Unsworth, N., Robison, M.K., 2018. Tracking arousal state and mind wandering with 
pupillometry. Cognit. Affect Behav. Neurosci. 18 (4), 638–664. https://doi.org/ 
10.3758/s13415-018-0594-4. 

van der Wel, P., van Steenbergen, H., 2018. Pupil dilation as an index of effort in 
cognitive control tasks: a review. Psychon. Bull. Rev. 25 (6), 2005–2015. https://doi. 
org/10.3758/s13423-018-1432-y. 

Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace, CA.  

A. Alexandersen et al.                                                                                                                                                                                                                         

https://www.frontiersin.org/article/10.3389/fpsyg.2014.00031
https://www.frontiersin.org/article/10.3389/fpsyg.2014.00031
https://doi.org/10.1016/j.neuroimage.2020.117412
https://doi.org/10.1016/j.neuroimage.2020.117412
https://doi.org/10.1093/cercor/bhab494
https://doi.org/10.1093/cercor/bhab494
https://doi.org/10.1016/j.neuroscience.2015.09.053
https://doi.org/10.3758/BF03204445
https://doi.org/10.3758/BF03204445
https://jasp-stats.org/
https://doi.org/10.1016/j.tics.2012.03.002
https://doi.org/10.1016/j.tics.2012.03.002
https://doi.org/10.1016/j.neuron.2015.11.028
https://doi.org/10.3758/s13414-019-01865-7
https://doi.org/10.3758/s13414-019-01865-7
https://doi.org/10.1016/j.neuropsychologia.2015.07.013
https://doi.org/10.1016/j.neuropsychologia.2015.07.013
https://doi.org/10.1016/j.neuroimage.2016.03.009
https://doi.org/10.1016/j.neuroimage.2016.03.009
https://doi.org/10.1016/j.tics.2021.12.005
https://doi.org/10.1016/j.tics.2021.12.005
https://doi.org/10.3389/fnhum.2017.00365
https://doi.org/10.1126/science.1192439
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.2190/7K24-G343-MTQW-115V
https://doi.org/10.1016/j.cognition.2017.06.006
https://doi.org/10.1093/cercor/bhw029
http://refhub.elsevier.com/S2666-9560(22)00033-2/optSSzIQyekbg
https://doi.org/10.1016/j.clinph.2014.05.021
https://doi.org/10.1016/j.clinph.2014.05.021
https://doi.org/10.1016/j.jesp.2018.08.009
https://doi.org/10.1016/j.jesp.2018.08.009
https://doi.org/10.3389/fpsyg.2011.00082
https://doi.org/10.6084/M9.FIGSHARE.688001.V1
https://doi.org/10.6084/M9.FIGSHARE.688001.V1
https://doi.org/10.1037/a0014104
https://doi.org/10.1037/a0018298
https://doi.org/10.21105/joss.02348
https://doi.org/10.1523/JNEUROSCI.2062-14.2014
https://doi.org/10.1523/JNEUROSCI.2062-14.2014
https://doi.org/10.1016/j.tics.2016.06.004
https://doi.org/10.1016/j.tics.2016.06.004
http://CRAN.R-project.org/
https://doi.org/10.3389/fpsyg.2013.00524
https://doi.org/10.1212/wnl.57.10.1899
https://doi.org/10.1212/wnl.57.10.1899
https://doi.org/10.1523/JNEUROSCI.5967-08.2009
https://doi.org/10.1037/stl0000060
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1073/pnas.94.8.3513
https://doi.org/10.1073/pnas.94.8.3513
https://doi.org/10.1073/pnas.93.5.2083
https://doi.org/10.1093/scan/nsx041
https://doi.org/10.1093/scan/nsx041
https://doi.org/10.3233/JAD-210378
https://doi.org/10.1176/jnp.14.4.377
https://doi.org/10.1111/j.1460-9568.2005.04482.x
https://doi.org/10.1016/B978-0-12-800090-8.00001-9
https://doi.org/10.1016/B978-0-12-800090-8.00001-9
https://doi.org/10.1523/ENEURO.0293-16.2017
https://doi.org/10.1523/ENEURO.0293-16.2017
https://doi.org/10.1037/a0030954
https://doi.org/10.1037/0033-2909.132.6.946
https://doi.org/10.1146/annurev-psych-010814-015331
https://doi.org/10.1016/j.brainres.2011.03.072
https://doi.org/10.1016/j.brainres.2011.03.072
https://doi.org/10.1177/1073858410386614
https://doi.org/10.1016/S0304-3940(03)00033-8
https://doi.org/10.1016/S0304-3940(03)00033-8
https://doi.org/10.3758/BF03197257
https://doi.org/10.1111/j.2044-8295.1998.tb02674.x
https://doi.org/10.1111/j.2044-8295.1998.tb02674.x
https://doi.org/10.1111/ejn.14403
https://doi.org/10.1111/ejn.14403
https://doi.org/10.3758/s13415-018-0594-4
https://doi.org/10.3758/s13415-018-0594-4
https://doi.org/10.3758/s13423-018-1432-y
https://doi.org/10.3758/s13423-018-1432-y
http://refhub.elsevier.com/S2666-9560(22)00033-2/sref82


Neuroimage: Reports 2 (2022) 100109

19

Watkins, E.R., 2008. Constructive and unconstructive repetitive thought. Psychol. Bull. 
134 (2), 163–206. https://doi.org/10.1037/0033-2909.134.2.163. 

Weigl, M., Mecklinger, A., Rosburg, T., 2016. Transcranial direct current stimulation 
over the left dorsolateral prefrontal cortex modulates auditory mismatch negativity. 
Clin. Neurophysiol.: Off. J. Int. Federat. Clin. Neurophysiol. 127 (5), 2263–2272. 
https://doi.org/10.1016/j.clinph.2016.01.024. 

Yanko, M.R., Spalek, T.M., 2013. Route familiarity breeds inattention: a driving 
simulator study. Accid. Anal. Prev. 57, 80–86. https://doi.org/10.1016/j. 
aap.2013.04.003. 

Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., 
Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R. 
L., 2011. The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. J. Neurophysiol. 106 (3), 1125–1165. https://doi.org/ 
10.1152/jn.00338.2011Barbur, J. L. 

Zekveld, A.A., Koelewijn, T., Kramer, S.E., 2018. The pupil dilation response to auditory 
stimuli: current state of knowledge. Trends Hear. 22 https://doi.org/10.1177/ 
2331216518777174. 

A. Alexandersen et al.                                                                                                                                                                                                                         

https://doi.org/10.1037/0033-2909.134.2.163
https://doi.org/10.1016/j.clinph.2016.01.024
https://doi.org/10.1016/j.aap.2013.04.003
https://doi.org/10.1016/j.aap.2013.04.003
https://doi.org/10.1152/jn.00338.2011Barbur, J. L
https://doi.org/10.1152/jn.00338.2011Barbur, J. L
https://doi.org/10.1177/2331216518777174
https://doi.org/10.1177/2331216518777174

	The effect of transcranial direct current stimulation on the interplay between executive control, behavioral variability an ...
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Design and procedure
	2.2.1 Lab, location, personnel
	2.2.2 Design
	2.2.3 Blinding

	2.3 HD-tDCS protocol
	2.4 The cognitive task
	2.5 Behavioral measurements
	2.5.1 Behavioral variability
	2.5.2 Approximate entropy

	2.6 1The details described in the following paragraphs were not specified in the pre-registration document submitted to OSF ...
	2.6.1 Pupillometry measurement and preprocessing
	2.6.2 EEG recording and preprocessing
	2.6.3 Feedback questionnaires

	2.7 Deviations from the original study
	2.8 Statistical methods
	2.8.1 Analytic methods
	2.8.2 Power analysis and sample size rationale

	2.9 Exploratory analyses
	2.9.1 Prolonged effects
	2.9.2 Robustness of the effects to changes of the time-window preceding probes
	2.9.3 Meta-analytic integration with Boayue et al. (2020)
	2.9.4 Pupillometry
	2.9.5 EEG


	3 Results
	3.1 Demographics
	3.2 Effect of HD-tDCS stimulation on mind wandering
	3.2.1 Pre-registered hypotheses
	3.2.2 Time on task, prolonged stimulation, and other task effects
	3.2.3 Robustness to changes in time-window preceding probes
	3.2.4 Meta-analytic integration with Boayue et al. (2020)

	3.3 Blinding
	3.4 EEG
	3.4.1 Mismatch negativity
	3.4.2 Occipital alpha power
	3.4.3 Frontal midline theta power

	3.5 Pupillometry
	3.5.1 Missing data
	3.5.2 Comparison of the traditional and novel algorithm
	3.5.3 Pupil responses and mind wandering
	3.5.4 Pupil response and HD-tDCS
	3.5.5 Pupil responses and approximate entropy


	4 Discussion
	Declaration of competing interest
	Acknowledgements
	References


